R Code:

#Final Project
#Load Data
library(readr)
combinedtrain <- read_csv("~/Desktop/combinedtrain.csv", 
                          col_types = cols(ndvi_ne = col_number(),
                                           ndvi_nw = col_number(), ndvi_se = col_number(), 
                                           ndvi_sw = col_number(), precipitation_amt_mm = col_number(), 
                                           reanalysis_air_temp_k = col_number(), 
                                           reanalysis_avg_temp_k = col_number(), 
                                           reanalysis_dew_point_temp_k = col_number(), 
                                           reanalysis_max_air_temp_k = col_number(), 
                                           reanalysis_min_air_temp_k = col_number(), 
                                           reanalysis_precip_amt_kg_per_m2 = col_number(), 
                                           reanalysis_relative_humidity_percent = col_number(), 
                                           reanalysis_sat_precip_amt_mm = col_number(), 
                                           reanalysis_specific_humidity_g_per_kg = col_number(), 
                                           reanalysis_tdtr_k = col_number(), 
                                           station_avg_temp_c = col_number(), 
                                           station_diur_temp_rng_c = col_number(), 
                                           station_max_temp_c = col_number(), 
                                           station_min_temp_c = col_number(), 
                                           station_precip_mm = col_number(), 
                                           total_cases = col_number(), weekofyear = col_number(), 
                                           year = col_number()))
test<- read_csv("~/Desktop/test.csv", 
                          col_types = cols(ndvi_ne = col_number(),
                                           ndvi_nw = col_number(), ndvi_se = col_number(), 
                                           ndvi_sw = col_number(), precipitation_amt_mm = col_number(), 
                                           reanalysis_air_temp_k = col_number(), 
                                           reanalysis_avg_temp_k = col_number(), 
                                           reanalysis_dew_point_temp_k = col_number(), 
                                           reanalysis_max_air_temp_k = col_number(), 
                                           reanalysis_min_air_temp_k = col_number(), 
                                           reanalysis_precip_amt_kg_per_m2 = col_number(), 
                                           reanalysis_relative_humidity_percent = col_number(), 
                                           reanalysis_sat_precip_amt_mm = col_number(), 
                                           reanalysis_specific_humidity_g_per_kg = col_number(), 
                                           reanalysis_tdtr_k = col_number(), 
                                           station_avg_temp_c = col_number(), 
                                           station_diur_temp_rng_c = col_number(), 
                                           station_max_temp_c = col_number(), 
                                           station_min_temp_c = col_number(), 
                                           station_precip_mm = col_number(), 
                                           weekofyear = col_number(), 
                                           year = col_number()))

sj.test=test[1:260,]
summary(sj.test)
##      city                year        weekofyear    week_start_date   
##  Length:260         Min.   :2008   Min.   : 1.00   Length:260        
##  Class :character   1st Qu.:2009   1st Qu.:13.75   Class :character  
##  Mode  :character   Median :2010   Median :26.50   Mode  :character  
##                     Mean   :2010   Mean   :26.50                     
##                     3rd Qu.:2012   3rd Qu.:39.25                     
##                     Max.   :2013   Max.   :53.00                     
##                                                                      
##     ndvi_ne            ndvi_nw             ndvi_se      
##  Min.   :-0.46340   Min.   :-6.670000   Min.   :0.0062  
##  1st Qu.:-0.04690   1st Qu.:-0.010500   1st Qu.:0.1319  
##  Median : 0.01498   Median : 0.032140   Median :0.1694  
##  Mean   : 0.02480   Mean   : 0.009943   Mean   :0.1771  
##  3rd Qu.: 0.07990   3rd Qu.: 0.077600   3rd Qu.:0.2181  
##  Max.   : 0.50040   Max.   : 0.649000   Max.   :0.3854  
##  NA's   :43         NA's   :11          NA's   :1       
##     ndvi_sw         precipitation_amt_mm reanalysis_air_temp_k
##  Min.   :-0.01467   Min.   :  0.000      Min.   :296.7        
##  1st Qu.: 0.11627   1st Qu.:  2.123      1st Qu.:298.3        
##  Median : 0.14802   Median : 13.975      Median :299.8        
##  Mean   : 0.15323   Mean   : 26.521      Mean   :299.5        
##  3rd Qu.: 0.19269   3rd Qu.: 42.370      3rd Qu.:300.6        
##  Max.   : 0.31813   Max.   :169.340      Max.   :301.5        
##  NA's   :1          NA's   :2            NA's   :2            
##  reanalysis_avg_temp_k reanalysis_dew_point_temp_k
##  Min.   :296.8         Min.   :290.8              
##  1st Qu.:298.4         1st Qu.:294.0              
##  Median :299.8         Median :295.7              
##  Mean   :299.5         Mean   :295.3              
##  3rd Qu.:300.7         3rd Qu.:296.8              
##  Max.   :301.5         Max.   :297.8              
##  NA's   :2             NA's   :2                  
##  reanalysis_max_air_temp_k reanalysis_min_air_temp_k
##  Min.   :298.2             Min.   :293.8            
##  1st Qu.:300.3             1st Qu.:296.6            
##  Median :301.9             Median :297.7            
##  Mean   :301.6             Mean   :297.6            
##  3rd Qu.:302.6             3rd Qu.:298.8            
##  Max.   :304.1             Max.   :299.7            
##  NA's   :2                 NA's   :2                
##  reanalysis_precip_amt_kg_per_m2 reanalysis_relative_humidity_percent
##  Min.   :  0.000                 Min.   :64.92                       
##  1st Qu.:  6.588                 1st Qu.:76.05                       
##  Median : 15.245                 Median :78.38                       
##  Mean   : 23.766                 Mean   :78.20                       
##  3rd Qu.: 29.600                 3rd Qu.:80.42                       
##  Max.   :301.400                 Max.   :86.78                       
##  NA's   :2                       NA's   :2                           
##  reanalysis_sat_precip_amt_mm reanalysis_specific_humidity_g_per_kg
##  Min.   :  0.000              Min.   :12.54                        
##  1st Qu.:  2.123              1st Qu.:15.37                        
##  Median : 13.975              Median :17.07                        
##  Mean   : 26.521              Mean   :16.75                        
##  3rd Qu.: 42.370              3rd Qu.:18.20                        
##  Max.   :169.340              Max.   :19.34                        
##  NA's   :2                    NA's   :2                            
##  reanalysis_tdtr_k station_avg_temp_c station_diur_temp_rng_c
##  Min.   :1.486     Min.   :24.16      Min.   :4.043          
##  1st Qu.:2.229     1st Qu.:26.07      1st Qu.:5.700          
##  Median :2.543     Median :27.42      Median :6.179          
##  Mean   :2.587     Mean   :27.27      Mean   :6.152          
##  3rd Qu.:2.857     3rd Qu.:28.51      3rd Qu.:6.586          
##  Max.   :4.429     Max.   :30.27      Max.   :8.400          
##  NA's   :2         NA's   :2          NA's   :2              
##  station_max_temp_c station_min_temp_c station_precip_mm
##  Min.   :27.20      Min.   :20.00      Min.   :  0.00   
##  1st Qu.:30.60      1st Qu.:21.70      1st Qu.:  7.25   
##  Median :31.70      Median :23.30      Median : 22.35   
##  Mean   :31.68      Mean   :23.11      Mean   : 34.21   
##  3rd Qu.:32.80      3rd Qu.:24.40      3rd Qu.: 48.35   
##  Max.   :35.00      Max.   :26.70      Max.   :207.70   
##  NA's   :2          NA's   :2          NA's   :2
iq.test=test[261:416,]

#test set up
testset ="https://s3.amazonaws.com/drivendata/data/44/public/submission_format.csv"
x = read.csv(file=testset)
x2 = read.csv(file=testset)
x3 = read.csv(file=testset)


#Load Libraries
library(forecast)
## Warning: package 'forecast' was built under R version 3.4.2
## Warning in as.POSIXlt.POSIXct(Sys.time()): unknown timezone 'zone/tz/2018c.
## 1.0/zoneinfo/America/New_York'
library(fpp)
## Loading required package: fma
## Loading required package: expsmooth
## Loading required package: lmtest
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: tseries
library(caret)
## Warning: package 'caret' was built under R version 3.4.3
## Loading required package: lattice
## Loading required package: ggplot2
library(neuralnet)
library(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
## 
##     margin
library(psych)
## 
## Attaching package: 'psych'
## The following object is masked from 'package:randomForest':
## 
##     outlier
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(VIM)
## Loading required package: colorspace
## Loading required package: grid
## Loading required package: data.table
## Warning: package 'data.table' was built under R version 3.4.2
## VIM is ready to use. 
##  Since version 4.0.0 the GUI is in its own package VIMGUI.
## 
##           Please use the package to use the new (and old) GUI.
## Suggestions and bug-reports can be submitted at: https://github.com/alexkowa/VIM/issues
## 
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
## 
##     sleep
library(mice)
## Warning: package 'mice' was built under R version 3.4.2
library(ResourceSelection)
## ResourceSelection 0.3-2   2017-02-28
library(corrplot)
## Warning: package 'corrplot' was built under R version 3.4.2
## corrplot 0.84 loaded
aggr(combinedtrain, prop=T,numbers=T)
## Warning in plot.aggr(res, ...): not enough horizontal space to display
## frequencies

##San Juan, PR
sj=combinedtrain[1:936,]
summary(sj)
##      city                year        weekofyear    week_start_date   
##  Length:936         Min.   :1990   Min.   : 1.00   Length:936        
##  Class :character   1st Qu.:1994   1st Qu.:13.75   Class :character  
##  Mode  :character   Median :1999   Median :26.50   Mode  :character  
##                     Mean   :1999   Mean   :26.50                     
##                     3rd Qu.:2003   3rd Qu.:39.25                     
##                     Max.   :2008   Max.   :53.00                     
##                                                                      
##   total_cases        ndvi_ne            ndvi_nw            ndvi_se        
##  Min.   :  0.00   Min.   :-0.40625   Min.   :-0.45610   Min.   :-0.01553  
##  1st Qu.:  9.00   1st Qu.: 0.00450   1st Qu.: 0.01642   1st Qu.: 0.13928  
##  Median : 19.00   Median : 0.05770   Median : 0.06808   Median : 0.17719  
##  Mean   : 34.18   Mean   : 0.05792   Mean   : 0.06747   Mean   : 0.17766  
##  3rd Qu.: 37.00   3rd Qu.: 0.11110   3rd Qu.: 0.11520   3rd Qu.: 0.21256  
##  Max.   :461.00   Max.   : 0.49340   Max.   : 0.43710   Max.   : 0.39313  
##                   NA's   :191        NA's   :49         NA's   :19        
##     ndvi_sw         precipitation_amt_mm reanalysis_air_temp_k
##  Min.   :-0.06346   Min.   :  0.00       Min.   :295.9        
##  1st Qu.: 0.12916   1st Qu.:  0.00       1st Qu.:298.2        
##  Median : 0.16597   Median : 20.80       Median :299.3        
##  Mean   : 0.16596   Mean   : 35.47       Mean   :299.2        
##  3rd Qu.: 0.20277   3rd Qu.: 52.18       3rd Qu.:300.1        
##  Max.   : 0.38142   Max.   :390.60       Max.   :302.2        
##  NA's   :19         NA's   :9            NA's   :6            
##  reanalysis_avg_temp_k reanalysis_dew_point_temp_k
##  Min.   :296.1         Min.   :289.6              
##  1st Qu.:298.3         1st Qu.:293.8              
##  Median :299.4         Median :295.5              
##  Mean   :299.3         Mean   :295.1              
##  3rd Qu.:300.2         3rd Qu.:296.4              
##  Max.   :302.2         Max.   :297.8              
##  NA's   :6             NA's   :6                  
##  reanalysis_max_air_temp_k reanalysis_min_air_temp_k
##  Min.   :297.8             Min.   :292.6            
##  1st Qu.:300.4             1st Qu.:296.3            
##  Median :301.5             Median :297.5            
##  Mean   :301.4             Mean   :297.3            
##  3rd Qu.:302.4             3rd Qu.:298.4            
##  Max.   :304.3             Max.   :299.9            
##  NA's   :6                 NA's   :6                
##  reanalysis_precip_amt_kg_per_m2 reanalysis_relative_humidity_percent
##  Min.   :  0.00                  Min.   :66.74                       
##  1st Qu.: 10.82                  1st Qu.:76.25                       
##  Median : 21.30                  Median :78.67                       
##  Mean   : 30.47                  Mean   :78.57                       
##  3rd Qu.: 37.00                  3rd Qu.:80.96                       
##  Max.   :570.50                  Max.   :87.58                       
##  NA's   :6                       NA's   :6                           
##  reanalysis_sat_precip_amt_mm reanalysis_specific_humidity_g_per_kg
##  Min.   :  0.00               Min.   :11.72                        
##  1st Qu.:  0.00               1st Qu.:15.24                        
##  Median : 20.80               Median :16.85                        
##  Mean   : 35.47               Mean   :16.55                        
##  3rd Qu.: 52.18               3rd Qu.:17.86                        
##  Max.   :390.60               Max.   :19.44                        
##  NA's   :9                    NA's   :6                            
##  reanalysis_tdtr_k station_avg_temp_c station_diur_temp_rng_c
##  Min.   :1.357     Min.   :22.84      Min.   :4.529          
##  1st Qu.:2.157     1st Qu.:25.84      1st Qu.:6.200          
##  Median :2.457     Median :27.23      Median :6.757          
##  Mean   :2.516     Mean   :27.01      Mean   :6.757          
##  3rd Qu.:2.800     3rd Qu.:28.19      3rd Qu.:7.286          
##  Max.   :4.429     Max.   :30.07      Max.   :9.914          
##  NA's   :6         NA's   :6          NA's   :6              
##  station_max_temp_c station_min_temp_c station_precip_mm
##  Min.   :26.70      Min.   :17.8       Min.   :  0.000  
##  1st Qu.:30.60      1st Qu.:21.7       1st Qu.:  6.825  
##  Median :31.70      Median :22.8       Median : 17.750  
##  Mean   :31.61      Mean   :22.6       Mean   : 26.785  
##  3rd Qu.:32.80      3rd Qu.:23.9       3rd Qu.: 35.450  
##  Max.   :35.60      Max.   :25.6       Max.   :305.900  
##  NA's   :6          NA's   :6          NA's   :6
#Train: make NA's Median of variable
sj$ndvi_ne <- ifelse(is.na(sj$ndvi_ne), median(sj$ndvi_ne, na.rm=TRUE), sj$ndvi_ne)
sj$ndvi_nw <- ifelse(is.na(sj$ndvi_nw), median(sj$ndvi_nw, na.rm=TRUE), sj$ndvi_nw)
sj$ndvi_se <- ifelse(is.na(sj$ndvi_se ), median(sj$ndvi_se , na.rm=TRUE), sj$ndvi_se )
sj$ndvi_sw <- ifelse(is.na(sj$ndvi_sw  ), median(sj$ndvi_sw  , na.rm=TRUE), sj$ndvi_sw )

sj$precipitation_amt_mm <- ifelse(is.na(sj$precipitation_amt_mm), median(sj$precipitation_amt_mm, na.rm=TRUE), sj$precipitation_amt_mm)
sj$reanalysis_air_temp_k <- ifelse(is.na(sj$reanalysis_air_temp_k), median(sj$reanalysis_air_temp_k, na.rm=TRUE), sj$reanalysis_air_temp_k)
sj$reanalysis_avg_temp_k <- ifelse(is.na(sj$reanalysis_avg_temp_k), median(sj$reanalysis_avg_temp_k, na.rm=TRUE), sj$reanalysis_avg_temp_k)
sj$reanalysis_dew_point_temp_k <- ifelse(is.na(sj$reanalysis_dew_point_temp_k), median(sj$reanalysis_dew_point_temp_k, na.rm=TRUE), sj$reanalysis_dew_point_temp_k)
sj$reanalysis_max_air_temp_k <- ifelse(is.na(sj$reanalysis_max_air_temp_k), median(sj$reanalysis_max_air_temp_k, na.rm=TRUE), sj$reanalysis_max_air_temp_k)
sj$reanalysis_min_air_temp_k <- ifelse(is.na(sj$reanalysis_min_air_temp_k), median(sj$reanalysis_min_air_temp_k, na.rm=TRUE), sj$reanalysis_min_air_temp_k)

sj$reanalysis_precip_amt_kg_per_m2 <- ifelse(is.na(sj$reanalysis_precip_amt_kg_per_m2), median(sj$reanalysis_precip_amt_kg_per_m2, na.rm=TRUE), sj$reanalysis_precip_amt_kg_per_m2)
sj$reanalysis_relative_humidity_percent <- ifelse(is.na(sj$reanalysis_relative_humidity_percent), median(sj$reanalysis_relative_humidity_percent, na.rm=TRUE), sj$reanalysis_relative_humidity_percent)
sj$reanalysis_sat_precip_amt_mm <- ifelse(is.na(sj$reanalysis_sat_precip_amt_mm), median(sj$reanalysis_sat_precip_amt_mm, na.rm=TRUE), sj$reanalysis_sat_precip_amt_mm)

sj$reanalysis_specific_humidity_g_per_kg<- ifelse(is.na(sj$reanalysis_specific_humidity_g_per_kg), median(sj$reanalysis_specific_humidity_g_per_kg, na.rm=TRUE), sj$reanalysis_specific_humidity_g_per_kg)
sj$reanalysis_tdtr_k<- ifelse(is.na(sj$reanalysis_tdtr_k), median(sj$reanalysis_tdtr_k, na.rm=TRUE), sj$reanalysis_tdtr_k)
sj$station_avg_temp_c<- ifelse(is.na(sj$station_avg_temp_c), median(sj$station_avg_temp_c, na.rm=TRUE), sj$station_avg_temp_c)
sj$station_diur_temp_rng_c<- ifelse(is.na(sj$station_diur_temp_rng_c), median(sj$station_diur_temp_rng_c, na.rm=TRUE), sj$station_diur_temp_rng_c)
sj$station_max_temp_c<- ifelse(is.na(sj$station_max_temp_c), median(sj$station_max_temp_c, na.rm=TRUE), sj$station_max_temp_c)
sj$station_min_temp_c<- ifelse(is.na(sj$station_min_temp_c), median(sj$station_min_temp_c, na.rm=TRUE), sj$station_min_temp_c)
sj$station_precip_mm<- ifelse(is.na(sj$station_precip_mm), median(sj$station_precip_mm, na.rm=TRUE), sj$station_precip_mm)

#Test: make NA's Median of variable
sj.test$ndvi_ne <- ifelse(is.na(sj.test$ndvi_ne), median(sj.test$ndvi_ne, na.rm=TRUE), sj.test$ndvi_ne)
sj.test$ndvi_nw <- ifelse(is.na(sj.test$ndvi_nw), median(sj.test$ndvi_nw, na.rm=TRUE), sj.test$ndvi_nw)
sj.test$ndvi_se <- ifelse(is.na(sj.test$ndvi_se ), median(sj.test$ndvi_se , na.rm=TRUE), sj.test$ndvi_se )
sj.test$ndvi_sw <- ifelse(is.na(sj.test$ndvi_sw  ), median(sj.test$ndvi_sw  , na.rm=TRUE), sj.test$ndvi_sw )

sj.test$precipitation_amt_mm <- ifelse(is.na(sj.test$precipitation_amt_mm), median(sj.test$precipitation_amt_mm, na.rm=TRUE), sj.test$precipitation_amt_mm)
sj.test$reanalysis_air_temp_k <- ifelse(is.na(sj.test$reanalysis_air_temp_k), median(sj.test$reanalysis_air_temp_k, na.rm=TRUE), sj.test$reanalysis_air_temp_k)
sj.test$reanalysis_avg_temp_k <- ifelse(is.na(sj.test$reanalysis_avg_temp_k), median(sj.test$reanalysis_avg_temp_k, na.rm=TRUE), sj.test$reanalysis_avg_temp_k)
sj.test$reanalysis_dew_point_temp_k <- ifelse(is.na(sj.test$reanalysis_dew_point_temp_k), median(sj.test$reanalysis_dew_point_temp_k, na.rm=TRUE), sj.test$reanalysis_dew_point_temp_k)
sj.test$reanalysis_max_air_temp_k <- ifelse(is.na(sj.test$reanalysis_max_air_temp_k), median(sj.test$reanalysis_max_air_temp_k, na.rm=TRUE), sj.test$reanalysis_max_air_temp_k)
sj.test$reanalysis_min_air_temp_k <- ifelse(is.na(sj.test$reanalysis_min_air_temp_k), median(sj.test$reanalysis_min_air_temp_k, na.rm=TRUE), sj.test$reanalysis_min_air_temp_k)

sj.test$reanalysis_precip_amt_kg_per_m2 <- ifelse(is.na(sj.test$reanalysis_precip_amt_kg_per_m2), median(sj.test$reanalysis_precip_amt_kg_per_m2, na.rm=TRUE), sj.test$reanalysis_precip_amt_kg_per_m2)
sj.test$reanalysis_relative_humidity_percent <- ifelse(is.na(sj.test$reanalysis_relative_humidity_percent), median(sj.test$reanalysis_relative_humidity_percent, na.rm=TRUE), sj.test$reanalysis_relative_humidity_percent)
sj.test$reanalysis_sat_precip_amt_mm <- ifelse(is.na(sj.test$reanalysis_sat_precip_amt_mm), median(sj.test$reanalysis_sat_precip_amt_mm, na.rm=TRUE), sj.test$reanalysis_sat_precip_amt_mm)

sj.test$reanalysis_specific_humidity_g_per_kg<- ifelse(is.na(sj.test$reanalysis_specific_humidity_g_per_kg), median(sj.test$reanalysis_specific_humidity_g_per_kg, na.rm=TRUE), sj.test$reanalysis_specific_humidity_g_per_kg)
sj.test$reanalysis_tdtr_k<- ifelse(is.na(sj.test$reanalysis_tdtr_k), median(sj.test$reanalysis_tdtr_k, na.rm=TRUE), sj.test$reanalysis_tdtr_k)
sj.test$station_avg_temp_c<- ifelse(is.na(sj.test$station_avg_temp_c), median(sj.test$station_avg_temp_c, na.rm=TRUE), sj.test$station_avg_temp_c)
sj.test$station_diur_temp_rng_c<- ifelse(is.na(sj.test$station_diur_temp_rng_c), median(sj$station_diur_temp_rng_c, na.rm=TRUE), sj.test$station_diur_temp_rng_c)
sj.test$station_max_temp_c<- ifelse(is.na(sj.test$station_max_temp_c), median(sj.test$station_max_temp_c, na.rm=TRUE), sj.test$station_max_temp_c)
sj.test$station_min_temp_c<- ifelse(is.na(sj.test$station_min_temp_c), median(sj.test$station_min_temp_c, na.rm=TRUE), sj.test$station_min_temp_c)
sj.test$station_precip_mm<- ifelse(is.na(sj.test$station_precip_mm), median(sj.test$station_precip_mm, na.rm=TRUE), sj.test$station_precip_mm)
summary(sj.test)
##      city                year        weekofyear    week_start_date   
##  Length:260         Min.   :2008   Min.   : 1.00   Length:260        
##  Class :character   1st Qu.:2009   1st Qu.:13.75   Class :character  
##  Mode  :character   Median :2010   Median :26.50   Mode  :character  
##                     Mean   :2010   Mean   :26.50                     
##                     3rd Qu.:2012   3rd Qu.:39.25                     
##                     Max.   :2013   Max.   :53.00                     
##     ndvi_ne            ndvi_nw             ndvi_se      
##  Min.   :-0.46340   Min.   :-6.670000   Min.   :0.0062  
##  1st Qu.:-0.03006   1st Qu.:-0.006262   1st Qu.:0.1319  
##  Median : 0.01498   Median : 0.032140   Median :0.1694  
##  Mean   : 0.02318   Mean   : 0.010882   Mean   :0.1770  
##  3rd Qu.: 0.06828   3rd Qu.: 0.076275   3rd Qu.:0.2181  
##  Max.   : 0.50040   Max.   : 0.649000   Max.   :0.3854  
##     ndvi_sw         precipitation_amt_mm reanalysis_air_temp_k
##  Min.   :-0.01467   Min.   :  0.000      Min.   :296.7        
##  1st Qu.: 0.11649   1st Qu.:  2.127      1st Qu.:298.3        
##  Median : 0.14802   Median : 13.975      Median :299.8        
##  Mean   : 0.15321   Mean   : 26.425      Mean   :299.5        
##  3rd Qu.: 0.19128   3rd Qu.: 41.810      3rd Qu.:300.6        
##  Max.   : 0.31813   Max.   :169.340      Max.   :301.5        
##  reanalysis_avg_temp_k reanalysis_dew_point_temp_k
##  Min.   :296.8         Min.   :290.8              
##  1st Qu.:298.4         1st Qu.:294.1              
##  Median :299.8         Median :295.7              
##  Mean   :299.5         Mean   :295.3              
##  3rd Qu.:300.7         3rd Qu.:296.8              
##  Max.   :301.5         Max.   :297.8              
##  reanalysis_max_air_temp_k reanalysis_min_air_temp_k
##  Min.   :298.2             Min.   :293.8            
##  1st Qu.:300.4             1st Qu.:296.6            
##  Median :301.9             Median :297.7            
##  Mean   :301.6             Mean   :297.6            
##  3rd Qu.:302.6             3rd Qu.:298.8            
##  Max.   :304.1             Max.   :299.7            
##  reanalysis_precip_amt_kg_per_m2 reanalysis_relative_humidity_percent
##  Min.   :  0.000                 Min.   :64.92                       
##  1st Qu.:  6.763                 1st Qu.:76.06                       
##  Median : 15.245                 Median :78.38                       
##  Mean   : 23.701                 Mean   :78.20                       
##  3rd Qu.: 29.000                 3rd Qu.:80.42                       
##  Max.   :301.400                 Max.   :86.78                       
##  reanalysis_sat_precip_amt_mm reanalysis_specific_humidity_g_per_kg
##  Min.   :  0.000              Min.   :12.54                        
##  1st Qu.:  2.127              1st Qu.:15.38                        
##  Median : 13.975              Median :17.07                        
##  Mean   : 26.425              Mean   :16.76                        
##  3rd Qu.: 41.810              3rd Qu.:18.18                        
##  Max.   :169.340              Max.   :19.34                        
##  reanalysis_tdtr_k station_avg_temp_c station_diur_temp_rng_c
##  Min.   :1.486     Min.   :24.16      Min.   :4.043          
##  1st Qu.:2.229     1st Qu.:26.07      1st Qu.:5.700          
##  Median :2.543     Median :27.42      Median :6.193          
##  Mean   :2.587     Mean   :27.27      Mean   :6.157          
##  3rd Qu.:2.857     3rd Qu.:28.51      3rd Qu.:6.586          
##  Max.   :4.429     Max.   :30.27      Max.   :8.400          
##  station_max_temp_c station_min_temp_c station_precip_mm
##  Min.   :27.20      Min.   :20.00      Min.   :  0.00   
##  1st Qu.:30.60      1st Qu.:21.70      1st Qu.:  7.35   
##  Median :31.70      Median :23.30      Median : 22.35   
##  Mean   :31.68      Mean   :23.11      Mean   : 34.12   
##  3rd Qu.:32.80      3rd Qu.:24.40      3rd Qu.: 48.25   
##  Max.   :35.00      Max.   :26.70      Max.   :207.70
#plots
attach(sj)
plot(ndvi_ne, total_cases)

plot( ndvi_nw, total_cases)

plot(ndvi_se, total_cases)

plot(ndvi_sw, total_cases)

plot(precipitation_amt_mm, total_cases) 

#
plot(reanalysis_air_temp_k,total_cases)

plot(reanalysis_avg_temp_k,total_cases)

plot(reanalysis_dew_point_temp_k,total_cases)

plot(reanalysis_max_air_temp_k,total_cases)

plot(reanalysis_min_air_temp_k,total_cases)

plot(reanalysis_specific_humidity_g_per_kg,total_cases)  

plot(station_avg_temp_c,total_cases)

plot(station_max_temp_c,total_cases)

plot(station_min_temp_c,total_cases)

#
plot(reanalysis_dew_point_temp_k,total_cases)

plot(reanalysis_max_air_temp_k,total_cases)

plot(reanalysis_min_air_temp_k,total_cases)

plot(reanalysis_precip_amt_kg_per_m2,total_cases) 

plot(reanalysis_relative_humidity_percent,total_cases)

plot(reanalysis_sat_precip_amt_mm,total_cases)

plot(reanalysis_specific_humidity_g_per_kg,total_cases)

plot(reanalysis_tdtr_k,total_cases)

plot(station_avg_temp_c,total_cases)

plot(station_diur_temp_rng_c,total_cases)

plot(station_max_temp_c,total_cases) 

plot(station_min_temp_c,total_cases) 

plot(station_precip_mm,total_cases) 

par(mfrow=c(1,3))
plot(reanalysis_dew_point_temp_k,total_cases,ylab= "Total Cases", xlab = "Mean Dew Point Temperature", main = "San Juan, Puerto Rico")#mean dew point temperature
plot(reanalysis_specific_humidity_g_per_kg,total_cases, ylab= "Total Cases", xlab = "Mean Specific Humidity")#mean specific humidity.  
plot(station_avg_temp_c,total_cases, ylab= "Total Cases", xlab = "Average temperature")#average temperature

#Correlation
mycor_sj=cor(sj[,5:25])
mycor_sj
##                                         total_cases      ndvi_ne
## total_cases                            1.000000e+00  0.023307674
## ndvi_ne                                2.330767e-02  1.000000000
## ndvi_nw                                4.978964e-02  0.611996124
## ndvi_se                                5.304514e-05  0.208352630
## ndvi_sw                               -2.012978e-04  0.161297801
## precipitation_amt_mm                   5.950978e-02 -0.042568774
## reanalysis_air_temp_k                  1.818242e-01 -0.065033980
## reanalysis_avg_temp_k                  1.751916e-01 -0.063396908
## reanalysis_dew_point_temp_k            2.038024e-01 -0.036017235
## reanalysis_max_air_temp_k              1.944342e-01 -0.039637851
## reanalysis_min_air_temp_k              1.879232e-01 -0.085436552
## reanalysis_precip_amt_kg_per_m2        1.070433e-01  0.004664456
## reanalysis_relative_humidity_percent   1.439411e-01  0.034458729
## reanalysis_sat_precip_amt_mm           5.950978e-02 -0.042568774
## reanalysis_specific_humidity_g_per_kg  2.079386e-01 -0.031643712
## reanalysis_tdtr_k                     -6.766633e-02 -0.007765380
## station_avg_temp_c                     1.965916e-01  0.056741126
## station_diur_temp_rng_c                3.459698e-02  0.124353404
## station_max_temp_c                     1.897796e-01  0.080881784
## station_min_temp_c                     1.769835e-01  0.016480583
## station_precip_mm                      5.134769e-02 -0.071149809
##                                            ndvi_nw       ndvi_se
## total_cases                            0.049789641  5.304514e-05
## ndvi_ne                                0.611996124  2.083526e-01
## ndvi_nw                                1.000000000  1.934753e-01
## ndvi_se                                0.193475251  1.000000e+00
## ndvi_sw                                0.210885032  8.213534e-01
## precipitation_amt_mm                  -0.031411845 -1.187984e-01
## reanalysis_air_temp_k                 -0.075604816 -1.455038e-02
## reanalysis_avg_temp_k                 -0.074531726 -1.186146e-02
## reanalysis_dew_point_temp_k           -0.025713549 -6.258495e-02
## reanalysis_max_air_temp_k             -0.045064454 -7.338411e-03
## reanalysis_min_air_temp_k             -0.073831555 -4.577488e-02
## reanalysis_precip_amt_kg_per_m2        0.009548669 -1.301078e-01
## reanalysis_relative_humidity_percent   0.074826663 -1.132023e-01
## reanalysis_sat_precip_amt_mm          -0.031411845 -1.187984e-01
## reanalysis_specific_humidity_g_per_kg -0.020331608 -5.825850e-02
## reanalysis_tdtr_k                     -0.049357256  2.917910e-02
## station_avg_temp_c                     0.084993385 -5.631050e-02
## station_diur_temp_rng_c                0.179036829  1.790613e-02
## station_max_temp_c                     0.132863413 -6.311423e-02
## station_min_temp_c                     0.015813529 -6.891307e-02
## station_precip_mm                     -0.072698900 -1.396019e-01
##                                             ndvi_sw precipitation_amt_mm
## total_cases                           -0.0002012978           0.05950978
## ndvi_ne                                0.1612978012          -0.04256877
## ndvi_nw                                0.2108850322          -0.03141184
## ndvi_se                                0.8213534420          -0.11879840
## ndvi_sw                                1.0000000000          -0.11793439
## precipitation_amt_mm                  -0.1179343942           1.00000000
## reanalysis_air_temp_k                 -0.0433893109           0.23434827
## reanalysis_avg_temp_k                 -0.0359388765           0.22273700
## reanalysis_dew_point_temp_k           -0.0877048471           0.40229780
## reanalysis_max_air_temp_k             -0.0148746139           0.25700401
## reanalysis_min_air_temp_k             -0.0721956337           0.24652166
## reanalysis_precip_amt_kg_per_m2       -0.1255970838           0.50941791
## reanalysis_relative_humidity_percent  -0.1175842524           0.50014823
## reanalysis_sat_precip_amt_mm          -0.1179343942           1.00000000
## reanalysis_specific_humidity_g_per_kg -0.0807331199           0.40965196
## reanalysis_tdtr_k                      0.0521392713          -0.09335411
## station_avg_temp_c                    -0.0414460872           0.19646891
## station_diur_temp_rng_c                0.0692331456          -0.15824083
## station_max_temp_c                    -0.0177335440           0.19298753
## station_min_temp_c                    -0.0737458046           0.22484629
## station_precip_mm                     -0.1739765680           0.56641160
##                                       reanalysis_air_temp_k
## total_cases                                      0.18182416
## ndvi_ne                                         -0.06503398
## ndvi_nw                                         -0.07560482
## ndvi_se                                         -0.01455038
## ndvi_sw                                         -0.04338931
## precipitation_amt_mm                             0.23434827
## reanalysis_air_temp_k                            1.00000000
## reanalysis_avg_temp_k                            0.99749501
## reanalysis_dew_point_temp_k                      0.90322987
## reanalysis_max_air_temp_k                        0.93509126
## reanalysis_min_air_temp_k                        0.94223856
## reanalysis_precip_amt_kg_per_m2                  0.07974350
## reanalysis_relative_humidity_percent             0.29914644
## reanalysis_sat_precip_amt_mm                     0.23434827
## reanalysis_specific_humidity_g_per_kg            0.90478923
## reanalysis_tdtr_k                                0.17499377
## station_avg_temp_c                               0.88092000
## station_diur_temp_rng_c                          0.03938994
## station_max_temp_c                               0.69795534
## station_min_temp_c                               0.83286434
## station_precip_mm                                0.11354495
##                                       reanalysis_avg_temp_k
## total_cases                                      0.17519157
## ndvi_ne                                         -0.06339691
## ndvi_nw                                         -0.07453173
## ndvi_se                                         -0.01186146
## ndvi_sw                                         -0.03593888
## precipitation_amt_mm                             0.22273700
## reanalysis_air_temp_k                            0.99749501
## reanalysis_avg_temp_k                            1.00000000
## reanalysis_dew_point_temp_k                      0.89507709
## reanalysis_max_air_temp_k                        0.93895420
## reanalysis_min_air_temp_k                        0.93911053
## reanalysis_precip_amt_kg_per_m2                  0.06187088
## reanalysis_relative_humidity_percent             0.28518725
## reanalysis_sat_precip_amt_mm                     0.22273700
## reanalysis_specific_humidity_g_per_kg            0.89615740
## reanalysis_tdtr_k                                0.19810993
## station_avg_temp_c                               0.87912378
## station_diur_temp_rng_c                          0.05396596
## station_max_temp_c                               0.70332252
## station_min_temp_c                               0.82711750
## station_precip_mm                                0.09765180
##                                       reanalysis_dew_point_temp_k
## total_cases                                            0.20380241
## ndvi_ne                                               -0.03601724
## ndvi_nw                                               -0.02571355
## ndvi_se                                               -0.06258495
## ndvi_sw                                               -0.08770485
## precipitation_amt_mm                                   0.40229780
## reanalysis_air_temp_k                                  0.90322987
## reanalysis_avg_temp_k                                  0.89507709
## reanalysis_dew_point_temp_k                            1.00000000
## reanalysis_max_air_temp_k                              0.84719605
## reanalysis_min_air_temp_k                              0.89882106
## reanalysis_precip_amt_kg_per_m2                        0.32795296
## reanalysis_relative_humidity_percent                   0.67929889
## reanalysis_sat_precip_amt_mm                           0.40229780
## reanalysis_specific_humidity_g_per_kg                  0.99852804
## reanalysis_tdtr_k                                     -0.03612925
## station_avg_temp_c                                     0.86894613
## station_diur_temp_rng_c                               -0.05670564
## station_max_temp_c                                     0.68976940
## station_min_temp_c                                     0.85016198
## station_precip_mm                                      0.28469973
##                                       reanalysis_max_air_temp_k
## total_cases                                         0.194434157
## ndvi_ne                                            -0.039637851
## ndvi_nw                                            -0.045064454
## ndvi_se                                            -0.007338411
## ndvi_sw                                            -0.014874614
## precipitation_amt_mm                                0.257004009
## reanalysis_air_temp_k                               0.935091263
## reanalysis_avg_temp_k                               0.938954202
## reanalysis_dew_point_temp_k                         0.847196050
## reanalysis_max_air_temp_k                           1.000000000
## reanalysis_min_air_temp_k                           0.828477295
## reanalysis_precip_amt_kg_per_m2                     0.090883506
## reanalysis_relative_humidity_percent                0.288493242
## reanalysis_sat_precip_amt_mm                        0.257004009
## reanalysis_specific_humidity_g_per_kg               0.853199059
## reanalysis_tdtr_k                                   0.349923492
## station_avg_temp_c                                  0.852525376
## station_diur_temp_rng_c                             0.113530506
## station_max_temp_c                                  0.760863830
## station_min_temp_c                                  0.770750472
## station_precip_mm                                   0.104639281
##                                       reanalysis_min_air_temp_k
## total_cases                                          0.18792322
## ndvi_ne                                             -0.08543655
## ndvi_nw                                             -0.07383156
## ndvi_se                                             -0.04577488
## ndvi_sw                                             -0.07219563
## precipitation_amt_mm                                 0.24652166
## reanalysis_air_temp_k                                0.94223856
## reanalysis_avg_temp_k                                0.93911053
## reanalysis_dew_point_temp_k                          0.89882106
## reanalysis_max_air_temp_k                            0.82847730
## reanalysis_min_air_temp_k                            1.00000000
## reanalysis_precip_amt_kg_per_m2                      0.13219184
## reanalysis_relative_humidity_percent                 0.38590645
## reanalysis_sat_precip_amt_mm                         0.24652166
## reanalysis_specific_humidity_g_per_kg                0.89623327
## reanalysis_tdtr_k                                   -0.05278682
## station_avg_temp_c                                   0.84168028
## station_diur_temp_rng_c                             -0.02396665
## station_max_temp_c                                   0.62684383
## station_min_temp_c                                   0.82945825
## station_precip_mm                                    0.15063173
##                                       reanalysis_precip_amt_kg_per_m2
## total_cases                                               0.107043301
## ndvi_ne                                                   0.004664456
## ndvi_nw                                                   0.009548669
## ndvi_se                                                  -0.130107815
## ndvi_sw                                                  -0.125597084
## precipitation_amt_mm                                      0.509417912
## reanalysis_air_temp_k                                     0.079743502
## reanalysis_avg_temp_k                                     0.061870877
## reanalysis_dew_point_temp_k                               0.327952959
## reanalysis_max_air_temp_k                                 0.090883506
## reanalysis_min_air_temp_k                                 0.132191840
## reanalysis_precip_amt_kg_per_m2                           1.000000000
## reanalysis_relative_humidity_percent                      0.602569300
## reanalysis_sat_precip_amt_mm                              0.509417912
## reanalysis_specific_humidity_g_per_kg                     0.333980964
## reanalysis_tdtr_k                                        -0.307617594
## station_avg_temp_c                                        0.133893672
## station_diur_temp_rng_c                                  -0.252395838
## station_max_temp_c                                        0.079604906
## station_min_temp_c                                        0.197631829
## station_precip_mm                                         0.478383653
##                                       reanalysis_relative_humidity_percent
## total_cases                                                     0.14394107
## ndvi_ne                                                         0.03445873
## ndvi_nw                                                         0.07482666
## ndvi_se                                                        -0.11320234
## ndvi_sw                                                        -0.11758425
## precipitation_amt_mm                                            0.50014823
## reanalysis_air_temp_k                                           0.29914644
## reanalysis_avg_temp_k                                           0.28518725
## reanalysis_dew_point_temp_k                                     0.67929889
## reanalysis_max_air_temp_k                                       0.28849324
## reanalysis_min_air_temp_k                                       0.38590645
## reanalysis_precip_amt_kg_per_m2                                 0.60256930
## reanalysis_relative_humidity_percent                            1.00000000
## reanalysis_sat_precip_amt_mm                                    0.50014823
## reanalysis_specific_humidity_g_per_kg                           0.67421230
## reanalysis_tdtr_k                                              -0.37487204
## station_avg_temp_c                                              0.42772357
## station_diur_temp_rng_c                                        -0.19382168
## station_max_temp_c                                              0.34325265
## station_min_temp_c                                              0.46688729
## station_precip_mm                                               0.44425777
##                                       reanalysis_sat_precip_amt_mm
## total_cases                                             0.05950978
## ndvi_ne                                                -0.04256877
## ndvi_nw                                                -0.03141184
## ndvi_se                                                -0.11879840
## ndvi_sw                                                -0.11793439
## precipitation_amt_mm                                    1.00000000
## reanalysis_air_temp_k                                   0.23434827
## reanalysis_avg_temp_k                                   0.22273700
## reanalysis_dew_point_temp_k                             0.40229780
## reanalysis_max_air_temp_k                               0.25700401
## reanalysis_min_air_temp_k                               0.24652166
## reanalysis_precip_amt_kg_per_m2                         0.50941791
## reanalysis_relative_humidity_percent                    0.50014823
## reanalysis_sat_precip_amt_mm                            1.00000000
## reanalysis_specific_humidity_g_per_kg                   0.40965196
## reanalysis_tdtr_k                                      -0.09335411
## station_avg_temp_c                                      0.19646891
## station_diur_temp_rng_c                                -0.15824083
## station_max_temp_c                                      0.19298753
## station_min_temp_c                                      0.22484629
## station_precip_mm                                       0.56641160
##                                       reanalysis_specific_humidity_g_per_kg
## total_cases                                                      0.20793860
## ndvi_ne                                                         -0.03164371
## ndvi_nw                                                         -0.02033161
## ndvi_se                                                         -0.05825850
## ndvi_sw                                                         -0.08073312
## precipitation_amt_mm                                             0.40965196
## reanalysis_air_temp_k                                            0.90478923
## reanalysis_avg_temp_k                                            0.89615740
## reanalysis_dew_point_temp_k                                      0.99852804
## reanalysis_max_air_temp_k                                        0.85319906
## reanalysis_min_air_temp_k                                        0.89623327
## reanalysis_precip_amt_kg_per_m2                                  0.33398096
## reanalysis_relative_humidity_percent                             0.67421230
## reanalysis_sat_precip_amt_mm                                     0.40965196
## reanalysis_specific_humidity_g_per_kg                            1.00000000
## reanalysis_tdtr_k                                               -0.02893894
## station_avg_temp_c                                               0.87003031
## station_diur_temp_rng_c                                         -0.05967380
## station_max_temp_c                                               0.69102418
## station_min_temp_c                                               0.84926234
## station_precip_mm                                                0.28803736
##                                       reanalysis_tdtr_k station_avg_temp_c
## total_cases                                -0.067666331         0.19659156
## ndvi_ne                                    -0.007765380         0.05674113
## ndvi_nw                                    -0.049357256         0.08499338
## ndvi_se                                     0.029179105        -0.05631050
## ndvi_sw                                     0.052139271        -0.04144609
## precipitation_amt_mm                       -0.093354111         0.19646891
## reanalysis_air_temp_k                       0.174993775         0.88092000
## reanalysis_avg_temp_k                       0.198109926         0.87912378
## reanalysis_dew_point_temp_k                -0.036129252         0.86894613
## reanalysis_max_air_temp_k                   0.349923492         0.85252538
## reanalysis_min_air_temp_k                  -0.052786824         0.84168028
## reanalysis_precip_amt_kg_per_m2            -0.307617594         0.13389367
## reanalysis_relative_humidity_percent       -0.374872037         0.42772357
## reanalysis_sat_precip_amt_mm               -0.093354111         0.19646891
## reanalysis_specific_humidity_g_per_kg      -0.028938938         0.87003031
## reanalysis_tdtr_k                           1.000000000         0.13571570
## station_avg_temp_c                          0.135715701         1.00000000
## station_diur_temp_rng_c                     0.370993189         0.18323188
## station_max_temp_c                          0.279684155         0.86449248
## station_min_temp_c                          0.007474441         0.89840433
## station_precip_mm                          -0.206055672         0.03049977
##                                       station_diur_temp_rng_c
## total_cases                                        0.03459698
## ndvi_ne                                            0.12435340
## ndvi_nw                                            0.17903683
## ndvi_se                                            0.01790613
## ndvi_sw                                            0.06923315
## precipitation_amt_mm                              -0.15824083
## reanalysis_air_temp_k                              0.03938994
## reanalysis_avg_temp_k                              0.05396596
## reanalysis_dew_point_temp_k                       -0.05670564
## reanalysis_max_air_temp_k                          0.11353051
## reanalysis_min_air_temp_k                         -0.02396665
## reanalysis_precip_amt_kg_per_m2                   -0.25239584
## reanalysis_relative_humidity_percent              -0.19382168
## reanalysis_sat_precip_amt_mm                      -0.15824083
## reanalysis_specific_humidity_g_per_kg             -0.05967380
## reanalysis_tdtr_k                                  0.37099319
## station_avg_temp_c                                 0.18323188
## station_diur_temp_rng_c                            1.00000000
## station_max_temp_c                                 0.47325828
## station_min_temp_c                                -0.12464389
## station_precip_mm                                 -0.26522131
##                                       station_max_temp_c
## total_cases                                  0.189779591
## ndvi_ne                                      0.080881784
## ndvi_nw                                      0.132863413
## ndvi_se                                     -0.063114231
## ndvi_sw                                     -0.017733544
## precipitation_amt_mm                         0.192987528
## reanalysis_air_temp_k                        0.697955345
## reanalysis_avg_temp_k                        0.703322522
## reanalysis_dew_point_temp_k                  0.689769404
## reanalysis_max_air_temp_k                    0.760863830
## reanalysis_min_air_temp_k                    0.626843830
## reanalysis_precip_amt_kg_per_m2              0.079604906
## reanalysis_relative_humidity_percent         0.343252654
## reanalysis_sat_precip_amt_mm                 0.192987528
## reanalysis_specific_humidity_g_per_kg        0.691024184
## reanalysis_tdtr_k                            0.279684155
## station_avg_temp_c                           0.864492476
## station_diur_temp_rng_c                      0.473258276
## station_max_temp_c                           1.000000000
## station_min_temp_c                           0.673002123
## station_precip_mm                            0.005826893
##                                       station_min_temp_c station_precip_mm
## total_cases                                  0.176983464       0.051347685
## ndvi_ne                                      0.016480583      -0.071149809
## ndvi_nw                                      0.015813529      -0.072698900
## ndvi_se                                     -0.068913066      -0.139601899
## ndvi_sw                                     -0.073745805      -0.173976568
## precipitation_amt_mm                         0.224846294       0.566411604
## reanalysis_air_temp_k                        0.832864344       0.113544952
## reanalysis_avg_temp_k                        0.827117500       0.097651799
## reanalysis_dew_point_temp_k                  0.850161982       0.284699728
## reanalysis_max_air_temp_k                    0.770750472       0.104639281
## reanalysis_min_air_temp_k                    0.829458255       0.150631734
## reanalysis_precip_amt_kg_per_m2              0.197631829       0.478383653
## reanalysis_relative_humidity_percent         0.466887291       0.444257765
## reanalysis_sat_precip_amt_mm                 0.224846294       0.566411604
## reanalysis_specific_humidity_g_per_kg        0.849262342       0.288037355
## reanalysis_tdtr_k                            0.007474441      -0.206055672
## station_avg_temp_c                           0.898404333       0.030499775
## station_diur_temp_rng_c                     -0.124643887      -0.265221307
## station_max_temp_c                           0.673002123       0.005826893
## station_min_temp_c                           1.000000000       0.084888874
## station_precip_mm                            0.084888874       1.000000000
corrplot(mycor_sj, type = "lower", order = "original", 
         tl.col = "black", tl.cex=0.70, tl.srt = 10)#SJCOR
## Warning in corrplot(mycor_sj, type = "lower", order = "original", tl.col =
## "black", : Not been able to calculate text margin, please try again with a
## clean new empty window using {plot.new(); dev.off()} or reduce tl.cex
##Regular
sjtot=ts(sj$total_cases, frequency=52, start=c(1990,04,30))
plot(sjtot, ylab= "Total Cases", main="San Juan, PR")
acf(sjtot, main="ACF: San Juan, PR")

pacf(sjtot, main="PACF: San Juan, PR")

#create xreg
xreg1<-cbind(sj$precipitation_amt_mm, sj$station_avg_temp_c)
xreg1.test<-cbind(sj.test$precipitation_amt_mm, sj.test$station_avg_temp_c)


##Iquitos, Peru
iq=combinedtrain[937:1456,]
summary(iq)
##      city                year        weekofyear    week_start_date   
##  Length:520         Min.   :2000   Min.   : 1.00   Length:520        
##  Class :character   1st Qu.:2003   1st Qu.:13.75   Class :character  
##  Mode  :character   Median :2005   Median :26.50   Mode  :character  
##                     Mean   :2005   Mean   :26.50                     
##                     3rd Qu.:2007   3rd Qu.:39.25                     
##                     Max.   :2010   Max.   :53.00                     
##                                                                      
##   total_cases         ndvi_ne           ndvi_nw           ndvi_se       
##  Min.   :  0.000   Min.   :0.06173   Min.   :0.03586   Min.   :0.02988  
##  1st Qu.:  1.000   1st Qu.:0.20000   1st Qu.:0.17954   1st Qu.:0.19474  
##  Median :  5.000   Median :0.26364   Median :0.23297   Median :0.24980  
##  Mean   :  7.565   Mean   :0.26387   Mean   :0.23878   Mean   :0.25013  
##  3rd Qu.:  9.000   3rd Qu.:0.31997   3rd Qu.:0.29393   3rd Qu.:0.30230  
##  Max.   :116.000   Max.   :0.50836   Max.   :0.45443   Max.   :0.53831  
##                    NA's   :3         NA's   :3         NA's   :3        
##     ndvi_sw        precipitation_amt_mm reanalysis_air_temp_k
##  Min.   :0.06418   Min.   :  0.00       Min.   :294.6        
##  1st Qu.:0.20413   1st Qu.: 39.10       1st Qu.:297.1        
##  Median :0.26214   Median : 60.47       Median :297.8        
##  Mean   :0.26678   Mean   : 64.25       Mean   :297.9        
##  3rd Qu.:0.32515   3rd Qu.: 85.76       3rd Qu.:298.6        
##  Max.   :0.54602   Max.   :210.83       Max.   :301.6        
##  NA's   :3         NA's   :4            NA's   :4            
##  reanalysis_avg_temp_k reanalysis_dew_point_temp_k
##  Min.   :294.9         Min.   :290.1              
##  1st Qu.:298.2         1st Qu.:294.6              
##  Median :299.1         Median :295.9              
##  Mean   :299.1         Mean   :295.5              
##  3rd Qu.:300.1         3rd Qu.:296.5              
##  Max.   :302.9         Max.   :298.4              
##  NA's   :4             NA's   :4                  
##  reanalysis_max_air_temp_k reanalysis_min_air_temp_k
##  Min.   :300.0             Min.   :286.9            
##  1st Qu.:305.2             1st Qu.:292.0            
##  Median :307.1             Median :293.1            
##  Mean   :307.1             Mean   :292.9            
##  3rd Qu.:308.7             3rd Qu.:294.2            
##  Max.   :314.0             Max.   :296.0            
##  NA's   :4                 NA's   :4                
##  reanalysis_precip_amt_kg_per_m2 reanalysis_relative_humidity_percent
##  Min.   :  0.00                  Min.   :57.79                       
##  1st Qu.: 24.07                  1st Qu.:84.30                       
##  Median : 46.44                  Median :90.92                       
##  Mean   : 57.61                  Mean   :88.64                       
##  3rd Qu.: 71.07                  3rd Qu.:94.56                       
##  Max.   :362.03                  Max.   :98.61                       
##  NA's   :4                       NA's   :4                           
##  reanalysis_sat_precip_amt_mm reanalysis_specific_humidity_g_per_kg
##  Min.   :  0.00               Min.   :12.11                        
##  1st Qu.: 39.10               1st Qu.:16.10                        
##  Median : 60.47               Median :17.43                        
##  Mean   : 64.25               Mean   :17.10                        
##  3rd Qu.: 85.76               3rd Qu.:18.18                        
##  Max.   :210.83               Max.   :20.46                        
##  NA's   :4                    NA's   :4                            
##  reanalysis_tdtr_k station_avg_temp_c station_diur_temp_rng_c
##  Min.   : 3.714    Min.   :21.40      Min.   : 5.20          
##  1st Qu.: 7.371    1st Qu.:27.00      1st Qu.: 9.50          
##  Median : 8.964    Median :27.60      Median :10.62          
##  Mean   : 9.207    Mean   :27.53      Mean   :10.57          
##  3rd Qu.:11.014    3rd Qu.:28.10      3rd Qu.:11.65          
##  Max.   :16.029    Max.   :30.80      Max.   :15.80          
##  NA's   :4         NA's   :37         NA's   :37             
##  station_max_temp_c station_min_temp_c station_precip_mm
##  Min.   :30.1       Min.   :14.7       Min.   :  0.00   
##  1st Qu.:33.2       1st Qu.:20.6       1st Qu.: 17.20   
##  Median :34.0       Median :21.3       Median : 45.30   
##  Mean   :34.0       Mean   :21.2       Mean   : 62.47   
##  3rd Qu.:34.9       3rd Qu.:22.0       3rd Qu.: 85.95   
##  Max.   :42.2       Max.   :24.2       Max.   :543.30   
##  NA's   :14         NA's   :8          NA's   :16
#Train: make NA's Median of variable
iq$ndvi_ne <- ifelse(is.na(iq$ndvi_ne), median(iq$ndvi_ne, na.rm=TRUE), iq$ndvi_ne)
iq$ndvi_nw <- ifelse(is.na(iq$ndvi_nw), median(iq$ndvi_nw, na.rm=TRUE), iq$ndvi_nw)
iq$ndvi_se <- ifelse(is.na(iq$ndvi_se ), median(iq$ndvi_se , na.rm=TRUE), iq$ndvi_se )
iq$ndvi_sw <- ifelse(is.na(iq$ndvi_sw  ), median(iq$ndvi_sw  , na.rm=TRUE), iq$ndvi_sw )

iq$precipitation_amt_mm <- ifelse(is.na(iq$precipitation_amt_mm), median(iq$precipitation_amt_mm, na.rm=TRUE), iq$precipitation_amt_mm)
iq$reanalysis_air_temp_k <- ifelse(is.na(iq$reanalysis_air_temp_k), median(iq$reanalysis_air_temp_k, na.rm=TRUE), iq$reanalysis_air_temp_k)
iq$reanalysis_avg_temp_k <- ifelse(is.na(iq$reanalysis_avg_temp_k), median(iq$reanalysis_avg_temp_k, na.rm=TRUE), iq$reanalysis_avg_temp_k)
iq$reanalysis_dew_point_temp_k <- ifelse(is.na(iq$reanalysis_dew_point_temp_k), median(iq$reanalysis_dew_point_temp_k, na.rm=TRUE), iq$reanalysis_dew_point_temp_k)
iq$reanalysis_max_air_temp_k <- ifelse(is.na(iq$reanalysis_max_air_temp_k), median(iq$reanalysis_max_air_temp_k, na.rm=TRUE), iq$reanalysis_max_air_temp_k)
iq$reanalysis_min_air_temp_k <- ifelse(is.na(iq$reanalysis_min_air_temp_k), median(iq$reanalysis_min_air_temp_k, na.rm=TRUE), iq$reanalysis_min_air_temp_k)

iq$reanalysis_precip_amt_kg_per_m2 <- ifelse(is.na(iq$reanalysis_precip_amt_kg_per_m2), median(iq$reanalysis_precip_amt_kg_per_m2, na.rm=TRUE), iq$reanalysis_precip_amt_kg_per_m2)
iq$reanalysis_relative_humidity_percent <- ifelse(is.na(iq$reanalysis_relative_humidity_percent), median(iq$reanalysis_relative_humidity_percent, na.rm=TRUE), iq$reanalysis_relative_humidity_percent)
iq$reanalysis_sat_precip_amt_mm <- ifelse(is.na(iq$reanalysis_sat_precip_amt_mm), median(iq$reanalysis_sat_precip_amt_mm, na.rm=TRUE), iq$reanalysis_sat_precip_amt_mm)

iq$reanalysis_specific_humidity_g_per_kg<- ifelse(is.na(iq$reanalysis_specific_humidity_g_per_kg), median(iq$reanalysis_specific_humidity_g_per_kg, na.rm=TRUE), iq$reanalysis_specific_humidity_g_per_kg)
iq$reanalysis_tdtr_k<- ifelse(is.na(iq$reanalysis_tdtr_k), median(iq$reanalysis_tdtr_k, na.rm=TRUE), iq$reanalysis_tdtr_k)
iq$station_avg_temp_c<- ifelse(is.na(iq$station_avg_temp_c), median(iq$station_avg_temp_c, na.rm=TRUE), iq$station_avg_temp_c)
iq$station_diur_temp_rng_c<- ifelse(is.na(iq$station_diur_temp_rng_c), median(iq$station_diur_temp_rng_c, na.rm=TRUE), iq$station_diur_temp_rng_c)
iq$station_max_temp_c<- ifelse(is.na(iq$station_max_temp_c), median(iq$station_max_temp_c, na.rm=TRUE), iq$station_max_temp_c)
iq$station_min_temp_c<- ifelse(is.na(iq$station_min_temp_c), median(iq$station_min_temp_c, na.rm=TRUE), iq$station_min_temp_c)
iq$station_precip_mm<- ifelse(is.na(iq$station_precip_mm), median(iq$station_precip_mm, na.rm=TRUE), iq$station_precip_mm)
summary(iq)
##      city                year        weekofyear    week_start_date   
##  Length:520         Min.   :2000   Min.   : 1.00   Length:520        
##  Class :character   1st Qu.:2003   1st Qu.:13.75   Class :character  
##  Mode  :character   Median :2005   Median :26.50   Mode  :character  
##                     Mean   :2005   Mean   :26.50                     
##                     3rd Qu.:2007   3rd Qu.:39.25                     
##                     Max.   :2010   Max.   :53.00                     
##   total_cases         ndvi_ne           ndvi_nw           ndvi_se       
##  Min.   :  0.000   Min.   :0.06173   Min.   :0.03586   Min.   :0.02988  
##  1st Qu.:  1.000   1st Qu.:0.20015   1st Qu.:0.18026   1st Qu.:0.19475  
##  Median :  5.000   Median :0.26364   Median :0.23297   Median :0.24980  
##  Mean   :  7.565   Mean   :0.26387   Mean   :0.23875   Mean   :0.25012  
##  3rd Qu.:  9.000   3rd Qu.:0.31962   3rd Qu.:0.29383   3rd Qu.:0.30213  
##  Max.   :116.000   Max.   :0.50836   Max.   :0.45443   Max.   :0.53831  
##     ndvi_sw        precipitation_amt_mm reanalysis_air_temp_k
##  Min.   :0.06418   Min.   :  0.00       Min.   :294.6        
##  1st Qu.:0.20430   1st Qu.: 39.15       1st Qu.:297.1        
##  Median :0.26214   Median : 60.47       Median :297.8        
##  Mean   :0.26675   Mean   : 64.22       Mean   :297.9        
##  3rd Qu.:0.32488   3rd Qu.: 85.64       3rd Qu.:298.6        
##  Max.   :0.54602   Max.   :210.83       Max.   :301.6        
##  reanalysis_avg_temp_k reanalysis_dew_point_temp_k
##  Min.   :294.9         Min.   :290.1              
##  1st Qu.:298.2         1st Qu.:294.6              
##  Median :299.1         Median :295.9              
##  Mean   :299.1         Mean   :295.5              
##  3rd Qu.:300.1         3rd Qu.:296.5              
##  Max.   :302.9         Max.   :298.4              
##  reanalysis_max_air_temp_k reanalysis_min_air_temp_k
##  Min.   :300.0             Min.   :286.9            
##  1st Qu.:305.2             1st Qu.:292.0            
##  Median :307.1             Median :293.1            
##  Mean   :307.1             Mean   :292.9            
##  3rd Qu.:308.7             3rd Qu.:294.1            
##  Max.   :314.0             Max.   :296.0            
##  reanalysis_precip_amt_kg_per_m2 reanalysis_relative_humidity_percent
##  Min.   :  0.00                  Min.   :57.79                       
##  1st Qu.: 24.21                  1st Qu.:84.39                       
##  Median : 46.44                  Median :90.92                       
##  Mean   : 57.52                  Mean   :88.66                       
##  3rd Qu.: 70.43                  3rd Qu.:94.55                       
##  Max.   :362.03                  Max.   :98.61                       
##  reanalysis_sat_precip_amt_mm reanalysis_specific_humidity_g_per_kg
##  Min.   :  0.00               Min.   :12.11                        
##  1st Qu.: 39.15               1st Qu.:16.12                        
##  Median : 60.47               Median :17.43                        
##  Mean   : 64.22               Mean   :17.10                        
##  3rd Qu.: 85.64               3rd Qu.:18.18                        
##  Max.   :210.83               Max.   :20.46                        
##  reanalysis_tdtr_k station_avg_temp_c station_diur_temp_rng_c
##  Min.   : 3.714    Min.   :21.40      Min.   : 5.20          
##  1st Qu.: 7.371    1st Qu.:27.05      1st Qu.: 9.55          
##  Median : 8.964    Median :27.60      Median :10.62          
##  Mean   : 9.205    Mean   :27.54      Mean   :10.57          
##  3rd Qu.:11.004    3rd Qu.:28.04      3rd Qu.:11.60          
##  Max.   :16.029    Max.   :30.80      Max.   :15.80          
##  station_max_temp_c station_min_temp_c station_precip_mm
##  Min.   :30.1       Min.   :14.7       Min.   :  0.00   
##  1st Qu.:33.2       1st Qu.:20.6       1st Qu.: 18.00   
##  Median :34.0       Median :21.3       Median : 45.30   
##  Mean   :34.0       Mean   :21.2       Mean   : 61.94   
##  3rd Qu.:34.8       3rd Qu.:22.0       3rd Qu.: 83.35   
##  Max.   :42.2       Max.   :24.2       Max.   :543.30
#Test: make NA's Median of variable
iq.test$ndvi_ne <- ifelse(is.na(iq.test$ndvi_ne), median(iq.test$ndvi_ne, na.rm=TRUE), iq.test$ndvi_ne)
iq.test$ndvi_nw <- ifelse(is.na(iq.test$ndvi_nw), median(iq.test$ndvi_nw, na.rm=TRUE), iq.test$ndvi_nw)
iq.test$ndvi_se <- ifelse(is.na(iq.test$ndvi_se ), median(iq.test$ndvi_se , na.rm=TRUE), iq.test$ndvi_se )
iq.test$ndvi_sw <- ifelse(is.na(iq.test$ndvi_sw  ), median(iq.test$ndvi_sw  , na.rm=TRUE), iq.test$ndvi_sw )

iq.test$precipitation_amt_mm <- ifelse(is.na(iq.test$precipitation_amt_mm), median(iq.test$precipitation_amt_mm, na.rm=TRUE), iq.test$precipitation_amt_mm)
iq.test$reanalysis_air_temp_k <- ifelse(is.na(iq.test$reanalysis_air_temp_k), median(iq.test$reanalysis_air_temp_k, na.rm=TRUE), iq.test$reanalysis_air_temp_k)
iq.test$reanalysis_avg_temp_k <- ifelse(is.na(iq.test$reanalysis_avg_temp_k), median(iq.test$reanalysis_avg_temp_k, na.rm=TRUE), iq.test$reanalysis_avg_temp_k)
iq.test$reanalysis_dew_point_temp_k <- ifelse(is.na(iq.test$reanalysis_dew_point_temp_k), median(iq.test$reanalysis_dew_point_temp_k, na.rm=TRUE), iq.test$reanalysis_dew_point_temp_k)
iq.test$reanalysis_max_air_temp_k <- ifelse(is.na(iq.test$reanalysis_max_air_temp_k), median(iq.test$reanalysis_max_air_temp_k, na.rm=TRUE), iq.test$reanalysis_max_air_temp_k)
iq.test$reanalysis_min_air_temp_k <- ifelse(is.na(iq.test$reanalysis_min_air_temp_k), median(iq.test$reanalysis_min_air_temp_k, na.rm=TRUE), iq.test$reanalysis_min_air_temp_k)

iq.test$reanalysis_precip_amt_kg_per_m2 <- ifelse(is.na(iq.test$reanalysis_precip_amt_kg_per_m2), median(iq.test$reanalysis_precip_amt_kg_per_m2, na.rm=TRUE), iq.test$reanalysis_precip_amt_kg_per_m2)
iq.test$reanalysis_relative_humidity_percent <- ifelse(is.na(iq.test$reanalysis_relative_humidity_percent), median(iq.test$reanalysis_relative_humidity_percent, na.rm=TRUE), iq.test$reanalysis_relative_humidity_percent)
iq.test$reanalysis_sat_precip_amt_mm <- ifelse(is.na(iq.test$reanalysis_sat_precip_amt_mm), median(iq.test$reanalysis_sat_precip_amt_mm, na.rm=TRUE), iq.test$reanalysis_sat_precip_amt_mm)

iq.test$reanalysis_specific_humidity_g_per_kg<- ifelse(is.na(iq.test$reanalysis_specific_humidity_g_per_kg), median(iq.test$reanalysis_specific_humidity_g_per_kg, na.rm=TRUE), iq.test$reanalysis_specific_humidity_g_per_kg)
iq.test$reanalysis_tdtr_k<- ifelse(is.na(iq.test$reanalysis_tdtr_k), median(iq.test$reanalysis_tdtr_k, na.rm=TRUE), iq.test$reanalysis_tdtr_k)
iq.test$station_avg_temp_c<- ifelse(is.na(iq.test$station_avg_temp_c), median(iq.test$station_avg_temp_c, na.rm=TRUE), iq.test$station_avg_temp_c)
iq.test$station_diur_temp_rng_c<- ifelse(is.na(iq.test$station_diur_temp_rng_c), median(iq.test$station_diur_temp_rng_c, na.rm=TRUE), iq.test$station_diur_temp_rng_c)
iq.test$station_max_temp_c<- ifelse(is.na(iq.test$station_max_temp_c), median(iq.test$station_max_temp_c, na.rm=TRUE), iq.test$station_max_temp_c)
iq.test$station_min_temp_c<- ifelse(is.na(iq.test$station_min_temp_c), median(iq.test$station_min_temp_c, na.rm=TRUE), iq.test$station_min_temp_c)
iq.test$station_precip_mm<- ifelse(is.na(iq.test$station_precip_mm), median(iq.test$station_precip_mm, na.rm=TRUE), iq.test$station_precip_mm)
summary(iq.test)
##      city                year        weekofyear    week_start_date   
##  Length:156         Min.   :2010   Min.   : 1.00   Length:156        
##  Class :character   1st Qu.:2011   1st Qu.:13.75   Class :character  
##  Mode  :character   Median :2012   Median :26.00   Mode  :character  
##                     Mean   :2012   Mean   :26.33                     
##                     3rd Qu.:2012   3rd Qu.:39.00                     
##                     Max.   :2013   Max.   :52.00                     
##     ndvi_ne           ndvi_nw           ndvi_se           ndvi_sw       
##  Min.   :0.08929   Min.   :0.06321   Min.   :0.09826   Min.   :0.08196  
##  1st Qu.:0.21496   1st Qu.:0.22244   1st Qu.:0.21198   1st Qu.:0.21750  
##  Median :0.26523   Median :0.26946   Median :0.25316   Median :0.28153  
##  Mean   :0.26689   Mean   :0.27057   Mean   :0.25858   Mean   :0.28223  
##  3rd Qu.:0.31924   3rd Qu.:0.32456   3rd Qu.:0.30164   3rd Qu.:0.34724  
##  Max.   :0.42999   Max.   :0.46480   Max.   :0.45304   Max.   :0.52904  
##  precipitation_amt_mm reanalysis_air_temp_k reanalysis_avg_temp_k
##  Min.   :  2.28       Min.   :294.6         Min.   :295.2        
##  1st Qu.: 36.95       1st Qu.:297.1         1st Qu.:298.2        
##  Median : 51.29       Median :297.8         Median :299.0        
##  Mean   : 57.92       Mean   :297.8         Mean   :299.0        
##  3rd Qu.: 72.81       3rd Qu.:298.3         3rd Qu.:299.8        
##  Max.   :152.32       Max.   :301.9         Max.   :303.3        
##  reanalysis_dew_point_temp_k reanalysis_max_air_temp_k
##  Min.   :292.0               Min.   :302.8            
##  1st Qu.:294.8               1st Qu.:305.4            
##  Median :295.9               Median :306.7            
##  Mean   :295.6               Mean   :307.0            
##  3rd Qu.:296.5               3rd Qu.:308.5            
##  Max.   :297.7               Max.   :314.1            
##  reanalysis_min_air_temp_k reanalysis_precip_amt_kg_per_m2
##  Min.   :286.2             Min.   :  2.60                 
##  1st Qu.:291.9             1st Qu.: 35.62                 
##  Median :292.9             Median : 59.30                 
##  Mean   :292.7             Mean   : 72.61                 
##  3rd Qu.:293.8             3rd Qu.: 98.97                 
##  Max.   :296.0             Max.   :280.42                 
##  reanalysis_relative_humidity_percent reanalysis_sat_precip_amt_mm
##  Min.   :66.31                        Min.   :  2.28              
##  1st Qu.:86.32                        1st Qu.: 36.95              
##  Median :91.41                        Median : 51.29              
##  Mean   :89.61                        Mean   : 57.92              
##  3rd Qu.:94.74                        3rd Qu.: 72.81              
##  Max.   :97.98                        Max.   :152.32              
##  reanalysis_specific_humidity_g_per_kg reanalysis_tdtr_k
##  Min.   :13.74                         Min.   : 4.800   
##  1st Qu.:16.33                         1st Qu.: 7.689   
##  Median :17.55                         Median : 9.371   
##  Mean   :17.21                         Mean   : 9.321   
##  3rd Qu.:18.17                         3rd Qu.:10.764   
##  Max.   :19.60                         Max.   :14.486   
##  station_avg_temp_c station_diur_temp_rng_c station_max_temp_c
##  Min.   :24.84      Min.   : 6.45           Min.   :29.60     
##  1st Qu.:27.05      1st Qu.: 9.70           1st Qu.:33.20     
##  Median :27.51      Median :10.73           Median :34.00     
##  Mean   :27.54      Mean   :10.74           Mean   :33.96     
##  3rd Qu.:28.01      3rd Qu.:11.63           3rd Qu.:34.83     
##  Max.   :29.13      Max.   :14.72           Max.   :38.40     
##  station_min_temp_c station_precip_mm
##  Min.   :14.20      Min.   :  0.00   
##  1st Qu.:20.60      1st Qu.: 11.72   
##  Median :21.20      Median : 27.20   
##  Mean   :21.09      Mean   : 34.25   
##  3rd Qu.:21.85      3rd Qu.: 43.62   
##  Max.   :23.20      Max.   :212.00
#Plots
attach(iq)
## The following objects are masked from sj:
## 
##     city, ndvi_ne, ndvi_nw, ndvi_se, ndvi_sw,
##     precipitation_amt_mm, reanalysis_air_temp_k,
##     reanalysis_avg_temp_k, reanalysis_dew_point_temp_k,
##     reanalysis_max_air_temp_k, reanalysis_min_air_temp_k,
##     reanalysis_precip_amt_kg_per_m2,
##     reanalysis_relative_humidity_percent,
##     reanalysis_sat_precip_amt_mm,
##     reanalysis_specific_humidity_g_per_kg, reanalysis_tdtr_k,
##     station_avg_temp_c, station_diur_temp_rng_c,
##     station_max_temp_c, station_min_temp_c, station_precip_mm,
##     total_cases, week_start_date, weekofyear, year
plot(ndvi_ne, total_cases)
plot( ndvi_nw, total_cases)

plot(ndvi_se, total_cases)
plot(ndvi_sw, total_cases)
plot(precipitation_amt_mm, total_cases) 

plot(reanalysis_air_temp_k,total_cases) 
plot(reanalysis_dew_point_temp_k,total_cases) 
plot(reanalysis_max_air_temp_k,total_cases)

plot(reanalysis_min_air_temp_k,total_cases)
plot(reanalysis_precip_amt_kg_per_m2,total_cases) 
plot(reanalysis_relative_humidity_percent,total_cases)

plot(reanalysis_sat_precip_amt_mm,total_cases)
plot(reanalysis_specific_humidity_g_per_kg,total_cases)
plot(reanalysis_tdtr_k,total_cases)

plot(station_avg_temp_c,total_cases)
plot(station_diur_temp_rng_c,total_cases)
plot(station_max_temp_c,total_cases) 

plot(station_min_temp_c,total_cases) 
plot(station_precip_mm,total_cases) 

###################
par(mfrow=c(1,1))

plot(reanalysis_specific_humidity_g_per_kg,total_cases, ylab= "Total Cases", xlab = "Mean Specific Humidity", main = "Iquitos, Peru")#mean specific humidity

plot(reanalysis_min_air_temp_k,total_cases, ylab= "Total Cases", xlab = "Minimum Air Temperature" )#minimum air temperature

plot(reanalysis_dew_point_temp_k ,total_cases, ylab= "Total Cases", xlab = "Mean Dew Point Temperature" )#mean dew point temperature

#Correlation
mycor_iq=cor(iq[,5:25])
corrplot(mycor_iq, type = "lower", order = "original", 
         tl.col = "black", tl.cex=0.70, tl.srt = 10)

#Models
##Regular
iqtot=ts(iq$total_cases, frequency=52, start=c(2000,07,01))
acf(iqtot)

pacf(iqtot)

plot(iqtot, ylab= "Total Cases", main="Iquitos, Peru")

acf(iqtot, main="ACF: Iquitos, Peru")

pacf(iqtot, main="PACF: Iquitos, Peru")

xregg1<-cbind(iq$precipitation_amt_mm, iq$station_avg_temp_c)
xregg1.test<-cbind(iq.test$precipitation_amt_mm, iq.test$station_avg_temp_c)

#test set up
testset ="https://s3.amazonaws.com/drivendata/data/44/public/submission_format.csv"
x = read.csv(file=testset)


###############################################################
#SJ#ARIMA w/Xreg
fit.xreg = auto.arima(sjtot, xreg = xreg1, seasonal=TRUE)
fit.xreg
## Series: sjtot 
## Regression with ARIMA(1,1,1) errors 
## 
## Coefficients:
##          ar1      ma1   xreg1   xreg2
##       0.7106  -0.5929  0.0011  1.1431
## s.e.  0.0953   0.1082  0.0074  0.6134
## 
## sigma^2 estimated as 180.6:  log likelihood=-3754.07
## AIC=7518.14   AICc=7518.2   BIC=7542.34
SJ_xreg_fcast=forecast(fit.xreg,xreg = xreg1.test, h=260)

plot(SJ_xreg_fcast, xlab= "Time", ylab= "Total Cases")

#IQ#ARIMA w/Xreg
iq.fit.xreg = auto.arima(iqtot, xreg = xregg1, seasonal=TRUE)
iq.fit.xreg
## Series: iqtot 
## Regression with ARIMA(0,1,2)(0,0,1)[52] errors 
## 
## Coefficients:
##           ma1      ma2    sma1    xreg1    xreg2
##       -0.2509  -0.2308  0.0573  -0.0012  -0.1445
## s.e.   0.0430   0.0449  0.0375   0.0080   0.3575
## 
## sigma^2 estimated as 52.31:  log likelihood=-1761
## AIC=3533.99   AICc=3534.16   BIC=3559.5
IQ_xreg_fcast=forecast(iq.fit.xreg, xreg = xregg1.test ,h=156)
IQ_xreg_fcast$mean
## Time Series:
## Start = c(2010, 7) 
## End = c(2013, 6) 
## Frequency = 52 
##   [1] 3.776943 3.587273 3.428449 3.460916 3.588377 3.672421 3.853572
##   [8] 3.843287 3.731227 3.359088 3.522173 3.378328 3.116142 3.247158
##  [15] 3.125092 3.085333 3.328766 3.101875 3.318532 3.649932 3.628971
##  [22] 3.661095 3.431634 3.569505 3.281089 3.312096 3.476700 3.936239
##  [29] 3.817860 4.253785 4.198785 3.846642 4.082058 4.396595 4.111886
##  [36] 4.065611 4.091741 4.364676 3.813886 3.656966 3.816574 3.885558
##  [43] 3.799337 3.468457 3.417117 3.945154 3.669459 3.598197 3.854891
##  [50] 3.273418 3.396375 3.588406 3.601376 3.593752 3.608601 3.640733
##  [57] 3.613257 3.625361 3.694636 3.552703 3.423451 3.510059 3.562308
##  [64] 3.553830 3.542688 3.666346 3.553240 3.544307 3.356753 3.627941
##  [71] 3.421670 3.369573 3.539126 3.558536 3.420364 3.428474 3.615156
##  [78] 3.474770 3.385794 3.564079 3.549591 3.456313 3.615547 3.613948
##  [85] 3.696206 3.538394 3.432147 3.612706 3.562551 3.611507 3.592708
##  [92] 3.404298 3.456619 3.369686 3.520241 3.526256 3.547867 3.664950
##  [99] 3.592148 3.599259 3.647832 3.666929 3.949030 3.628597 3.597659
## [106] 3.849115 3.742503 3.787026 3.936695 3.732497 3.686214 3.618256
## [113] 3.764713 3.571602 3.624946 3.405887 3.539434 3.501788 3.616290
## [120] 3.408230 3.498537 3.582168 3.391498 3.386556 3.579289 3.698263
## [127] 3.501738 3.431612 3.452084 3.465577 3.449452 3.744818 3.695136
## [134] 3.445763 3.695746 3.389694 3.430022 3.606474 3.571092 3.462254
## [141] 3.475223 3.480811 3.410288 3.308220 3.505382 3.458750 3.625310
## [148] 3.667651 3.419193 3.470747 3.650867 3.597590 3.542378 3.579353
## [155] 3.700717 3.591511
plot(IQ_xreg_fcast, xlab= "Time", ylab= "Total Cases")

#Model 1: Submission
par(mfrow=c(1,2))
plot(SJ_xreg_fcast, xlab= "Time", ylab= "Total Cases")
plot(IQ_xreg_fcast, xlab= "Time", ylab= "Total Cases")

x$total_cases[1:260]<-round(SJ_xreg_fcast$mean)
x$total_cases[261:416]<-round(IQ_xreg_fcast$mean)


write.csv(x, file="~/Desktop/sub..1.csv", row.names = FALSE)

#SCORE=34.0841
###############################################################
#SJ#Neural Net w/ xreg
set.seed(1)
SJ_nnetarxreg_fit=nnetar(sjtot, xreg = xreg1)
summary(SJ_nnetarxreg_fit)
##           Length Class        Mode     
## x          936   ts           numeric  
## m            1   -none-       numeric  
## p            1   -none-       numeric  
## P            1   -none-       numeric  
## scalex       2   -none-       list     
## scalexreg    2   -none-       list     
## size         1   -none-       numeric  
## xreg      1872   -none-       numeric  
## subset     936   -none-       numeric  
## model       20   nnetarmodels list     
## nnetargs     0   -none-       list     
## fitted     936   ts           numeric  
## residuals  936   ts           numeric  
## lags        14   -none-       numeric  
## series       1   -none-       character
## method       1   -none-       character
## call         3   -none-       call
SJ_nnetarxreg_fcast=forecast(SJ_nnetarxreg_fit,xreg = xreg1.test, h=260)
summary(SJ_nnetarxreg_fcast)
## 
## Forecast method: NNAR(13,1,8)[52]
## 
## Model Information:
## 
## Average of 20 networks, each of which is
## a 16-8-1 network with 145 weights
## options were - linear output units 
## 
## Error measures:
##                       ME     RMSE      MAE  MPE MAPE      MASE        ACF1
## Training set -0.01425697 6.954031 5.036321 -Inf  Inf 0.1378575 -0.03078745
## 
## Forecasts:
##          Point Forecast
## 2008.058       5.088645
## 2008.077       3.847115
## 2008.096       4.752338
## 2008.115       6.043877
## 2008.135       6.611736
## 2008.154       7.710873
## 2008.173       7.472490
## 2008.192       8.828239
## 2008.212      10.274801
## 2008.231      10.922776
## 2008.250      10.538671
## 2008.269      11.940997
## 2008.288      13.078818
## 2008.308      14.934234
## 2008.327      15.487494
## 2008.346      17.567950
## 2008.365      18.890467
## 2008.385      20.460546
## 2008.404      24.083159
## 2008.423      23.989087
## 2008.442      24.505618
## 2008.462      23.911623
## 2008.481      27.149547
## 2008.500      27.728051
## 2008.519      26.483678
## 2008.538      26.427277
## 2008.558      26.458758
## 2008.577      26.641633
## 2008.596      26.343511
## 2008.615      24.402585
## 2008.635      22.376130
## 2008.654      20.904338
## 2008.673      19.927544
## 2008.692      18.430392
## 2008.712      16.960008
## 2008.731      16.621653
## 2008.750      14.684839
## 2008.769      13.607102
## 2008.788      12.519399
## 2008.808      11.286424
## 2008.827      10.543947
## 2008.846       9.808920
## 2008.865       9.123115
## 2008.885       8.473608
## 2008.904       8.175295
## 2008.923       7.576489
## 2008.942       7.300688
## 2008.962       6.922615
## 2008.981       6.693975
## 2009.000       6.128399
## 2009.019       5.388297
## 2009.038       5.136742
## 2009.058       4.822114
## 2009.077       4.297264
## 2009.096       4.320100
## 2009.115       3.862846
## 2009.135       5.805671
## 2009.154       5.647684
## 2009.173       6.085603
## 2009.192       6.822438
## 2009.212       7.847304
## 2009.231      11.094361
## 2009.250      12.279047
## 2009.269      14.040638
## 2009.288      16.084920
## 2009.308      18.424402
## 2009.327      21.246039
## 2009.346      22.724605
## 2009.365      25.823715
## 2009.385      30.533808
## 2009.404      35.664473
## 2009.423      38.746508
## 2009.442      44.783837
## 2009.462      49.552103
## 2009.481      60.056008
## 2009.500      73.639911
## 2009.519      87.642760
## 2009.538     100.213967
## 2009.558     117.325103
## 2009.577     129.994651
## 2009.596     142.603422
## 2009.615     160.208747
## 2009.635     191.904123
## 2009.654     251.234288
## 2009.673     326.137134
## 2009.692     371.056102
## 2009.712     406.081647
## 2009.731     411.630302
## 2009.750     424.888406
## 2009.769     423.203796
## 2009.788     414.099044
## 2009.808     402.210430
## 2009.827     404.377575
## 2009.846     396.874093
## 2009.865     368.563320
## 2009.885     297.761704
## 2009.904     234.504465
## 2009.923     187.861682
## 2009.942     149.033630
## 2009.962     120.447636
## 2009.981     100.054105
## 2010.000      79.689401
## 2010.019      52.749683
## 2010.038      39.308540
## 2010.058      34.936264
## 2010.077      29.604339
## 2010.096      21.012707
## 2010.115      21.349653
## 2010.135      23.392616
## 2010.154      23.659440
## 2010.173      22.632830
## 2010.192      19.578691
## 2010.212      19.639000
## 2010.231      20.948913
## 2010.250      25.357251
## 2010.269      28.188724
## 2010.288      28.109095
## 2010.308      27.959239
## 2010.327      32.802292
## 2010.346      37.943803
## 2010.365      40.991283
## 2010.385      47.468744
## 2010.404      54.119953
## 2010.423      62.560400
## 2010.442      66.827356
## 2010.462      71.576278
## 2010.481      72.837708
## 2010.500      75.897677
## 2010.519      77.884278
## 2010.538      78.062825
## 2010.558      74.253207
## 2010.577      70.779672
## 2010.596      65.930466
## 2010.615      58.762930
## 2010.635      50.865548
## 2010.654      44.796036
## 2010.673      41.135459
## 2010.692      38.066861
## 2010.712      35.613727
## 2010.731      33.630944
## 2010.750      32.583358
## 2010.769      31.628132
## 2010.788      31.722848
## 2010.808      31.448876
## 2010.827      31.429510
## 2010.846      31.498106
## 2010.865      31.051469
## 2010.885      30.078202
## 2010.904      28.102563
## 2010.923      26.129542
## 2010.942      24.491667
## 2010.962      23.202088
## 2010.981      21.926408
## 2011.000      20.805006
## 2011.019      19.337563
## 2011.038      17.804681
## 2011.058      16.426404
## 2011.077      15.343892
## 2011.096      14.117980
## 2011.115      14.064858
## 2011.135      12.910478
## 2011.154      13.373484
## 2011.173      12.384276
## 2011.192      13.128529
## 2011.212      13.481649
## 2011.231      14.864967
## 2011.250      14.723598
## 2011.269      14.981077
## 2011.288      14.544481
## 2011.308      16.576989
## 2011.327      16.343018
## 2011.346      18.195440
## 2011.365      18.807441
## 2011.385      20.331291
## 2011.404      20.246653
## 2011.423      21.795483
## 2011.442      23.481510
## 2011.462      21.391377
## 2011.481      23.413914
## 2011.500      25.638359
## 2011.519      25.671286
## 2011.538      26.321917
## 2011.558      24.770866
## 2011.577      25.395322
## 2011.596      25.406219
## 2011.615      24.919911
## 2011.635      23.690998
## 2011.654      21.727814
## 2011.673      20.678636
## 2011.692      21.030636
## 2011.712      19.175935
## 2011.731      17.612463
## 2011.750      16.234265
## 2011.769      15.132072
## 2011.788      14.341213
## 2011.808      13.354365
## 2011.827      12.292077
## 2011.846      11.315559
## 2011.865      10.733464
## 2011.885      10.166181
## 2011.904       9.153495
## 2011.923       8.589851
## 2011.942       8.162125
## 2011.962       8.167209
## 2011.981       8.130879
## 2012.000       7.473669
## 2012.019       6.712765
## 2012.038       6.179551
## 2012.058       5.587431
## 2012.077       6.522614
## 2012.096       5.819315
## 2012.115       6.700274
## 2012.135       6.496977
## 2012.154       6.424659
## 2012.173       8.688106
## 2012.192      10.548344
## 2012.212      13.820543
## 2012.231      16.766604
## 2012.250      18.316553
## 2012.269      18.902166
## 2012.288      21.499214
## 2012.308      23.295703
## 2012.327      26.745613
## 2012.346      29.163360
## 2012.365      32.727514
## 2012.385      38.237474
## 2012.404      39.492147
## 2012.423      44.605467
## 2012.442      54.066403
## 2012.462      65.800197
## 2012.481      82.009021
## 2012.500      91.588951
## 2012.519     103.091932
## 2012.538     118.303437
## 2012.558     135.087178
## 2012.577     159.864546
## 2012.596     188.355393
## 2012.615     230.008428
## 2012.635     293.583774
## 2012.654     353.877449
## 2012.673     403.128021
## 2012.692     415.102335
## 2012.712     419.543616
## 2012.731     420.954115
## 2012.750     422.051344
## 2012.769     414.240250
## 2012.788     408.428342
## 2012.808     400.449445
## 2012.827     390.893099
## 2012.846     332.087358
## 2012.865     268.605505
## 2012.885     220.708524
## 2012.904     170.516963
## 2012.923     148.549477
## 2012.942     119.122117
## 2012.962      97.068677
## 2012.981      73.671054
## 2013.000      53.114647
## 2013.019      42.955948
## 2013.038      33.866597
plot(SJ_nnetarxreg_fcast,xlab= "Time", ylab= "Total Cases")

#IQ#Neural Net w/ xreg
set.seed(1)
IQ_nnetarxreg_fit=nnetar(iqtot, xreg = xregg1)
summary(IQ_nnetarxreg_fit)
##           Length Class        Mode     
## x          520   ts           numeric  
## m            1   -none-       numeric  
## p            1   -none-       numeric  
## P            1   -none-       numeric  
## scalex       2   -none-       list     
## scalexreg    2   -none-       list     
## size         1   -none-       numeric  
## xreg      1040   -none-       numeric  
## subset     520   -none-       numeric  
## model       20   nnetarmodels list     
## nnetargs     0   -none-       list     
## fitted     520   ts           numeric  
## residuals  520   ts           numeric  
## lags         6   -none-       numeric  
## series       1   -none-       character
## method       1   -none-       character
## call         3   -none-       call
IQ_nnxreg_fcast=forecast(IQ_nnetarxreg_fit,xreg = xregg1.test, h=156)
summary(IQ_nnxreg_fcast)
## 
## Forecast method: NNAR(5,1,4)[52]
## 
## Model Information:
## 
## Average of 20 networks, each of which is
## a 8-4-1 network with 41 weights
## options were - linear output units 
## 
## Error measures:
##                        ME     RMSE      MAE  MPE MAPE     MASE       ACF1
## Training set -0.003093782 4.446992 3.093393 -Inf  Inf 0.327684 0.02708984
## 
## Forecasts:
##          Point Forecast
## 2010.115       4.038533
## 2010.135       3.623803
## 2010.154       3.983151
## 2010.173       4.205464
## 2010.192       4.097784
## 2010.212       4.811998
## 2010.231       4.461265
## 2010.250       4.741493
## 2010.269       4.844160
## 2010.288       5.347565
## 2010.308       4.918594
## 2010.327       5.805969
## 2010.346       5.995956
## 2010.365       6.277155
## 2010.385       6.874579
## 2010.404       7.494688
## 2010.423       7.148932
## 2010.442       7.825965
## 2010.462       7.707098
## 2010.481       7.830498
## 2010.500       7.097768
## 2010.519       6.844158
## 2010.538       7.084950
## 2010.558       6.939062
## 2010.577       7.326344
## 2010.596       7.760601
## 2010.615       6.717712
## 2010.635       6.985027
## 2010.654       6.897127
## 2010.673       7.030315
## 2010.692       6.550053
## 2010.712       6.724809
## 2010.731       7.005525
## 2010.750       6.993938
## 2010.769       6.923062
## 2010.788       6.744460
## 2010.808       5.840452
## 2010.827       6.371155
## 2010.846       6.088917
## 2010.865       5.653397
## 2010.885       5.737285
## 2010.904       5.153690
## 2010.923       3.961838
## 2010.942       4.088506
## 2010.962       4.359410
## 2010.981       4.238415
## 2011.000       3.812801
## 2011.019       3.541580
## 2011.038       4.601873
## 2011.058       3.964750
## 2011.077       4.311263
## 2011.096       4.291770
## 2011.115       4.543324
## 2011.135       4.531384
## 2011.154       4.709956
## 2011.173       4.237909
## 2011.192       3.897382
## 2011.212       4.422344
## 2011.231       4.346619
## 2011.250       5.025619
## 2011.269       5.345148
## 2011.288       5.648902
## 2011.308       6.152011
## 2011.327       5.756262
## 2011.346       6.031906
## 2011.365       5.428974
## 2011.385       5.714675
## 2011.404       5.741738
## 2011.423       6.123639
## 2011.442       5.804292
## 2011.462       6.427088
## 2011.481       6.733292
## 2011.500       6.633761
## 2011.519       6.178266
## 2011.538       6.410688
## 2011.558       6.640109
## 2011.577       6.069722
## 2011.596       5.531649
## 2011.615       5.395108
## 2011.635       5.817327
## 2011.654       5.352898
## 2011.673       5.011558
## 2011.692       4.785355
## 2011.712       4.770352
## 2011.731       4.696702
## 2011.750       4.347093
## 2011.769       4.270373
## 2011.788       3.693510
## 2011.808       3.323248
## 2011.827       3.503816
## 2011.846       3.565839
## 2011.865       3.305253
## 2011.885       3.100382
## 2011.904       3.775406
## 2011.923       3.629143
## 2011.942       4.079875
## 2011.962       4.085831
## 2011.981       4.096746
## 2012.000       3.818143
## 2012.019       4.193773
## 2012.038       4.212230
## 2012.058       4.315927
## 2012.077       4.111017
## 2012.096       4.360807
## 2012.115       3.977162
## 2012.135       4.354985
## 2012.154       3.907922
## 2012.173       4.197796
## 2012.192       4.174864
## 2012.212       4.185362
## 2012.231       4.227915
## 2012.250       4.592673
## 2012.269       4.329388
## 2012.288       4.823685
## 2012.308       5.201175
## 2012.327       5.399574
## 2012.346       5.635121
## 2012.365       6.004496
## 2012.385       5.445819
## 2012.404       5.794748
## 2012.423       5.935080
## 2012.442       5.472985
## 2012.462       5.946041
## 2012.481       6.117068
## 2012.500       6.052461
## 2012.519       5.452802
## 2012.538       5.973585
## 2012.558       6.070263
## 2012.577       5.265583
## 2012.596       5.573375
## 2012.615       5.789533
## 2012.635       5.243074
## 2012.654       4.984141
## 2012.673       4.678836
## 2012.692       4.631255
## 2012.712       4.531955
## 2012.731       4.234308
## 2012.750       4.152864
## 2012.769       4.467492
## 2012.788       4.035023
## 2012.808       4.780926
## 2012.827       4.482894
## 2012.846       4.061019
## 2012.865       5.163101
## 2012.885       4.777378
## 2012.904       5.066142
## 2012.923       4.468692
## 2012.942       4.818436
## 2012.962       4.915486
## 2012.981       5.170873
## 2013.000       4.460840
## 2013.019       4.778718
## 2013.038       4.573304
## 2013.058       4.329047
## 2013.077       4.256575
## 2013.096       4.387227
plot(IQ_nnxreg_fcast,xlab= "Time", ylab= "Total Cases")

#Model 2: Submission
par(mfrow=c(1,2))
plot(SJ_nnetarxreg_fcast,xlab= "Time", ylab= "Total Cases")
plot(IQ_nnxreg_fcast,xlab= "Time", ylab= "Total Cases")

x2$total_cases[1:260]<-round(SJ_nnetarxreg_fcast$mean)
x2$total_cases[261:416]<-round(IQ_nnxreg_fcast$mean)


write.csv(x2, file="~/Desktop/sub..2.csv", row.names = FALSE)

#SCORE= 36.4087
###############################################################
#SJ#Stlf, Forecasting using stl objects
SJ_ets<-stlf(sjtot, method="ets", h=260)
summary(SJ_ets)
## 
## Forecast method: STL +  ETS(A,Ad,N)
## 
## Model Information:
## ETS(A,Ad,N) 
## 
## Call:
##  ets(y = x, model = etsmodel, allow.multiplicative.trend = allow.multiplicative.trend) 
## 
##   Smoothing parameters:
##     alpha = 0.9998 
##     beta  = 0.1206 
##     phi   = 0.8 
## 
##   Initial states:
##     l = 29.3372 
##     b = 0.07 
## 
##   sigma:  10.9579
## 
##      AIC     AICc      BIC 
## 10897.44 10897.53 10926.49 
## 
## Error measures:
##                        ME     RMSE      MAE  MPE MAPE      MASE       ACF1
## Training set 0.0002649299 10.95795 7.067943 -Inf  Inf 0.1934684 0.04828091
## 
## Forecasts:
##          Point Forecast       Lo 80     Hi 80       Lo 95     Hi 95
## 2008.058      12.888537   -1.154638  26.93171   -8.588645  34.36572
## 2008.077      12.844129   -7.993807  33.68206  -19.024744  44.71300
## 2008.096      13.932199  -12.634142  40.49854  -26.697514  54.56191
## 2008.115      12.849703  -18.877986  44.57739  -35.673610  61.37302
## 2008.135      19.181395  -17.316061  55.67885  -36.636647  74.99944
## 2008.154      18.600830  -22.360235  59.56189  -44.043713  81.24537
## 2008.173      19.550751  -25.618464  64.71997  -49.529602  88.63110
## 2008.192      25.273348  -23.883081  74.42978  -49.904922 100.45162
## 2008.212      24.512771  -28.435793  77.46134  -56.465070 105.49061
## 2008.231      24.086494  -32.479771  80.65276  -62.424143 110.59713
## 2008.250      28.900320  -31.126384  88.92702  -62.902602 120.70324
## 2008.269      34.879749  -28.464805  98.22430  -61.997386 131.75688
## 2008.288      36.926085  -29.606478 103.45865  -64.826689 138.67886
## 2008.308      39.178046  -30.423881 108.77997  -67.268916 145.62501
## 2008.327      53.846397  -18.716162 126.40896  -57.128460 164.82125
## 2008.346      51.597735  -23.825535 127.02101  -63.752203 166.94767
## 2008.365      64.014463  -14.177468 142.20639  -55.569776 183.59870
## 2008.385      65.777470  -15.098117 146.65306  -57.911067 189.46601
## 2008.404      64.424708  -19.055856 147.90527  -63.247797 192.09721
## 2008.423      75.420705  -10.591847 161.43326  -56.124141 206.96555
## 2008.442      67.943637  -20.533042 156.42032  -67.369767 203.25704
## 2008.462      66.954605  -23.922974 157.83218  -72.030658 205.93987
## 2008.481      75.769245  -17.450198 168.98869  -66.797591 218.33608
## 2008.500      59.874243  -35.631831 155.38032  -86.189692 205.93818
## 2008.519      53.976491  -43.764432 151.71741  -95.505351 203.45833
## 2008.538      45.909457  -54.017675 145.83659 -106.915904 198.73482
## 2008.558      41.898915  -60.168653 143.96648 -114.199959 197.99779
## 2008.577      40.118875  -64.045971 144.28372 -119.187510 199.42526
## 2008.596      31.533151  -74.688213 137.75451 -130.918407 193.98471
## 2008.615      29.432555  -78.806765 137.67187 -136.105199 194.97031
## 2008.635      28.413387  -81.807345 138.63412 -140.154675 196.98145
## 2008.654      21.689042  -90.478417 133.85650 -149.856282 193.23437
## 2008.673      21.161950  -92.919265 135.24317 -153.310212 195.63411
## 2008.692      19.357248  -96.606338 135.32083 -157.993752 196.70825
## 2008.712      18.932489  -98.883547 136.74853 -161.251590 199.11657
## 2008.731      18.053619 -101.586309 137.69355 -164.919862 201.02710
## 2008.750      17.771541 -103.664982 139.20806 -167.949595 203.49268
## 2008.769      22.565727 -100.641271 145.77272 -165.863116 210.99457
## 2008.788      17.251893 -107.700554 142.20434 -173.846384 208.35017
## 2008.808      14.972408 -111.701486 141.64630 -178.758595 208.70341
## 2008.827      13.821246 -114.551050 142.19354 -182.507238 210.14973
## 2008.846      14.890513 -115.158034 144.93906 -184.001576 213.78260
## 2008.865      14.254446 -117.449043 145.95793 -187.168658 215.67755
## 2008.885      15.225603 -118.112306 148.56351 -188.697131 219.14834
## 2008.904      11.959819 -122.992731 146.91237 -194.432296 218.35193
## 2008.923       9.414506 -127.133606 145.96262 -199.417810 218.24682
## 2008.942      13.237027 -124.888225 151.36228 -198.007317 224.48137
## 2008.962       9.884537 -129.800056 149.56913 -203.744614 223.51369
## 2008.981       7.660414 -133.566311 148.88714 -208.327223 223.64805
## 2009.000       9.388068 -133.364133 152.14027 -208.932584 227.70872
## 2009.019       7.068636 -137.192915 151.33019 -213.560368 227.69764
## 2009.038       7.101538 -138.653738 152.85681 -215.811920 230.01499
## 2009.058      14.570022 -132.663826 161.80387 -210.604717 239.74476
## 2009.077      14.189317 -134.508404 162.88704 -213.224222 241.60286
## 2009.096      15.008350 -135.138974 165.15567 -214.622166 244.63887
## 2009.115      13.710625 -137.872441 165.29369 -218.115669 245.53692
## 2009.135      19.870132 -133.135204 172.87547 -214.131337 253.87160
## 2009.154      19.151820 -135.262688 173.56633 -217.004792 255.30843
## 2009.173      19.991543 -135.819394 175.80248 -218.300721 258.28381
## 2009.192      25.625982 -131.568979 182.82094 -214.782965 266.03493
## 2009.212      24.794878 -133.772028 183.36178 -217.712277 267.30203
## 2009.231      24.312180 -135.614902 184.23926 -220.275186 268.89955
## 2009.250      29.080868 -132.194919 190.35666 -217.569164 275.73090
## 2009.269      35.024188 -127.589119 197.63750 -213.671404 283.71978
## 2009.288      37.041636 -126.898279 200.98155 -213.682828 287.76610
## 2009.308      39.270487 -125.985387 204.52636 -213.466562 292.00754
## 2009.327      53.920350 -112.641086 220.48179 -200.813384 308.65408
## 2009.346      51.656898 -116.199947 219.51374 -205.057993 308.37179
## 2009.365      64.061793 -105.080539 233.20412 -194.619081 322.74267
## 2009.385      65.815334 -104.602789 236.23346 -194.816694 326.44736
## 2009.404      64.454999 -107.229435 236.13943 -198.113685 327.02368
## 2009.423      75.444938  -97.496535 248.38641 -189.046221 339.93610
## 2009.442      67.963023 -106.226418 242.15246 -198.436738 334.36278
## 2009.462      66.970114 -108.458418 242.39865 -201.324672 335.26490
## 2009.481      75.781653 -100.877278 252.44058 -194.394867 345.95817
## 2009.500      59.884169 -117.996651 237.76499 -212.161069 331.92941
## 2009.519      53.984432 -125.109941 233.07880 -219.916776 327.88564
## 2009.538      45.915809 -134.383949 226.21557 -229.828875 321.66049
## 2009.558      41.903997 -139.593141 223.40113 -235.671922 319.47992
## 2009.577      40.122940 -142.563729 222.80961 -239.272210 319.51809
## 2009.596      31.536403 -152.332103 215.40491 -249.666210 312.73902
## 2009.615      29.435157 -155.607638 214.47795 -253.563376 312.43369
## 2009.635      28.415468 -157.794209 214.62515 -256.367659 313.19860
## 2009.654      21.690707 -165.678587 209.06000 -264.865900 308.24731
## 2009.673      21.163282 -167.358495 209.68506 -267.155896 309.48246
## 2009.692      19.358314 -170.308945 209.02557 -270.712726 309.42935
## 2009.712      18.933342 -171.872520 209.73920 -272.879043 310.74573
## 2009.731      18.054301 -173.883411 209.99201 -275.489099 311.59770
## 2009.750      17.772087 -175.290840 210.83501 -277.492180 313.03635
## 2009.769      22.566164 -171.615458 216.74778 -274.408999 319.54133
## 2009.788      17.252242 -178.041665 212.54615 -281.424015 315.92850
## 2009.808      14.972688 -181.427207 211.37258 -285.395031 315.34041
## 2009.827      13.821469 -183.678219 211.32116 -288.228239 315.87118
## 2009.846      14.890692 -183.702699 213.48408 -288.831691 318.61307
## 2009.865      14.254589 -185.426516 213.93569 -291.131307 319.64048
## 2009.885      15.225717 -185.537207 215.98864 -291.814679 322.26611
## 2009.904      11.959911 -189.879035 213.79886 -296.726118 320.64594
## 2009.923       9.414579 -193.494682 212.32384 -300.908357 319.73751
## 2009.942      13.237085 -190.736875 217.21105 -298.714167 325.18834
## 2009.962       9.884584 -195.148547 214.91772 -303.686530 323.45570
## 2009.981       7.660451 -198.426407 213.74731 -307.522200 322.84310
## 2010.000       9.388098 -197.747127 216.52332 -307.397891 326.17409
## 2010.019       7.068660 -201.109652 215.24697 -311.312594 325.44991
## 2010.038       7.101557 -202.114642 216.31776 -312.867008 327.07012
## 2010.058      14.570038 -195.678925 224.81900 -306.978002 336.11808
## 2010.077      14.189330 -197.087348 225.46601 -308.930465 337.30912
## 2010.096      15.008360 -197.291058 227.30778 -309.675581 339.69230
## 2010.115      13.710633 -199.606622 227.02789 -312.529955 339.95122
## 2010.135      19.870139 -194.460119 234.20040 -307.919704 347.65998
## 2010.154      19.151825 -196.186670 234.49032 -310.179984 348.48363
## 2010.173      19.991547 -196.350487 236.33358 -310.875043 350.85814
## 2010.192      25.625985 -191.714955 242.96693 -306.768298 358.02027
## 2010.212      24.794881 -193.540394 243.13016 -309.120108 358.70987
## 2010.231      24.312182 -195.012921 243.63728 -311.116617 359.74098
## 2010.250      29.080870 -191.229613 249.39135 -307.854938 366.01668
## 2010.269      35.024190 -186.267286 256.31567 -303.411918 373.46030
## 2010.288      37.041637 -185.226502 259.30978 -302.888147 376.97142
## 2010.308      39.270488 -183.970041 262.51102 -302.146439 380.68741
## 2010.327      53.920351 -170.288351 278.12905 -288.977269 396.81797
## 2010.346      51.656898 -173.515814 276.82961 -292.715048 396.02884
## 2010.365      64.061793 -162.070820 290.19441 -281.778194 409.90178
## 2010.385      65.815334 -161.273122 292.90379 -281.486489 413.11716
## 2010.404      64.454999 -163.585294 292.49529 -284.302533 413.21253
## 2010.423      75.444938 -153.543235 304.43311 -274.762252 425.65213
## 2010.442      67.963023 -161.969123 297.89517 -283.687849 419.61390
## 2010.462      66.970114 -163.902145 297.84237 -286.118537 420.05876
## 2010.481      75.781653 -156.026907 307.59021 -278.738946 430.30225
## 2010.500      59.884169 -172.856924 292.62526 -296.062617 415.83096
## 2010.519      53.984432 -179.685474 287.65434 -303.382850 411.35171
## 2010.538      45.915809 -188.679232 280.51085 -312.866345 404.69796
## 2010.558      41.903997 -193.612545 277.42054 -318.287471 402.09546
## 2010.577      40.122940 -196.311511 276.55739 -321.472349 401.71823
## 2010.596      31.536403 -205.812408 268.88521 -331.457278 394.53009
## 2010.615      29.435157 -208.824505 267.69482 -334.951551 393.82186
## 2010.635      28.415468 -210.751575 267.58251 -337.358960 394.18990
## 2010.654      21.690707 -218.380289 261.76170 -345.466197 388.84761
## 2010.673      21.163282 -219.808274 262.13484 -347.370911 389.69748
## 2010.692      19.358314 -222.510451 261.22708 -350.548041 389.26467
## 2010.712      18.933342 -223.829315 261.69600 -352.340103 390.20679
## 2010.731      18.054301 -225.598969 261.70757 -354.581219 390.68982
## 2010.750      17.772087 -226.768553 262.31273 -356.220548 391.76472
## 2010.769      22.566164 -222.858637 267.99096 -352.778678 397.91101
## 2010.788      17.252242 -229.053545 263.55803 -359.439953 393.94444
## 2010.808      14.972688 -232.210947 262.15632 -363.062059 393.00743
## 2010.827      13.821469 -234.236906 261.87984 -365.551077 393.19402
## 2010.846      14.890692 -234.039350 263.82073 -365.814954 395.59634
## 2010.865      14.254589 -235.544078 264.05326 -367.779505 396.28868
## 2010.885      15.225717 -235.438565 265.89000 -368.132220 398.58365
## 2010.904      11.959911 -239.567007 263.48683 -372.717315 396.63714
## 2010.923       9.414579 -242.972027 261.80118 -376.577426 395.40658
## 2010.942      13.237085 -240.006290 266.48046 -374.065235 400.53941
## 2010.962       9.884584 -244.212671 263.98184 -378.723633 398.49280
## 2010.981       7.660451 -247.287825 262.60873 -382.249290 397.57019
## 2011.000       9.388098 -246.408368 265.18456 -381.818837 400.59503
## 2011.019       7.068660 -249.573192 263.71051 -385.431182 399.56850
## 2011.038       7.101557 -250.382906 264.58602 -386.686947 400.89006
## 2011.058      14.570038 -243.754287 272.89436 -380.502924 409.64300
## 2011.077      14.189330 -244.972136 273.35079 -382.163928 410.54259
## 2011.096      15.008360 -244.987550 275.00427 -382.621071 412.63779
## 2011.115      13.710633 -247.117053 274.53832 -385.190889 412.61215
## 2011.135      19.870139 -241.786678 281.52696 -380.299430 420.03971
## 2011.154      19.151825 -243.331504 281.63515 -382.281785 420.58544
## 2011.173      19.991547 -243.315700 283.29879 -382.702137 422.68523
## 2011.192      25.625985 -238.502610 289.75458 -378.323842 429.57581
## 2011.212      24.794881 -240.152516 289.74228 -380.407195 429.99696
## 2011.231      24.312182 -241.451494 290.07586 -382.138285 430.76265
## 2011.250      29.080870 -237.496585 295.65833 -378.614165 436.77591
## 2011.269      35.024190 -232.364568 302.41295 -373.911627 443.96001
## 2011.288      37.041637 -231.155969 305.23924 -373.131206 447.21448
## 2011.308      39.270488 -229.733535 308.27451 -372.135663 450.67664
## 2011.327      53.920351 -215.887679 323.72838 -358.715422 466.55612
## 2011.346      51.656898 -218.952749 322.26654 -362.204843 465.51864
## 2011.365      64.061793 -207.347104 335.47069 -351.022295 479.14588
## 2011.385      65.815334 -206.390466 338.02113 -350.487512 482.11818
## 2011.404      64.454999 -208.545378 337.45538 -353.063048 481.97305
## 2011.423      75.444938 -198.347710 349.23759 -343.284783 494.17466
## 2011.442      67.963023 -206.619610 342.54566 -351.974875 487.90092
## 2011.462      66.970114 -208.400238 342.34047 -354.172497 488.11272
## 2011.481      75.781653 -200.374171 351.93748 -346.562233 498.12554
## 2011.500      59.884169 -217.054899 336.82324 -363.657585 483.42592
## 2011.519      53.984432 -223.735671 331.70453 -370.751813 478.72068
## 2011.538      45.915809 -232.583138 324.41476 -380.011576 471.84319
## 2011.558      41.903997 -237.371623 321.17962 -385.211206 469.01920
## 2011.577      40.122940 -239.927199 320.17308 -388.176787 468.42267
## 2011.596      31.536403 -249.286118 312.35892 -397.944581 461.01739
## 2011.615      29.435157 -252.157629 311.02794 -401.223845 460.09416
## 2011.635      28.415468 -253.945480 310.77642 -403.418337 460.24927
## 2011.654      21.690707 -261.436320 304.81773 -411.314715 454.69613
## 2011.673      21.163282 -262.727756 305.05432 -413.010594 455.33716
## 2011.692      19.358314 -265.294686 304.01131 -415.980881 454.69751
## 2011.712      18.933342 -266.479584 304.34627 -417.568060 455.43474
## 2011.731      18.054301 -268.116534 304.22514 -419.606223 455.71482
## 2011.750      17.772087 -269.154655 304.69883 -421.044496 456.58867
## 2011.769      22.566164 -265.114498 310.24683 -417.403441 462.53577
## 2011.788      17.252242 -271.180369 305.68485 -423.867371 458.37186
## 2011.808      14.972688 -274.209918 304.15529 -427.293943 457.23932
## 2011.827      13.821469 -276.109191 303.75213 -429.589212 457.23215
## 2011.846      14.890692 -275.786098 305.56748 -429.661096 459.44248
## 2011.865      14.254589 -277.166420 305.67560 -431.435384 459.94456
## 2011.885      15.225717 -276.937615 307.38905 -431.599541 462.05098
## 2011.904      11.959911 -280.943863 304.86369 -435.997756 459.91758
## 2011.923       9.414579 -284.227771 303.05693 -439.672641 458.50180
## 2011.942      13.237085 -281.141986 307.61616 -436.976853 463.45102
## 2011.962       9.884584 -285.229370 304.99854 -441.453260 461.22243
## 2011.981       7.660451 -288.186560 303.50746 -444.798508 460.11941
## 2012.000       9.388098 -287.190159 305.96636 -444.189204 462.96540
## 2012.019       7.068660 -290.239044 304.37636 -447.624235 461.76156
## 2012.038       7.101557 -290.933809 305.13692 -448.704201 462.90731
## 2012.058      14.570038 -284.191217 313.33129 -442.345872 471.48595
## 2012.077      14.189330 -285.296055 313.67471 -443.834041 472.21270
## 2012.096      15.008360 -285.199408 315.21613 -444.119800 474.13652
## 2012.115      13.710633 -287.217784 314.63905 -446.519666 473.94093
## 2012.135      19.870139 -281.777206 321.51748 -441.459664 481.19994
## 2012.154      19.151825 -283.212737 321.51639 -443.274868 481.57852
## 2012.173      19.991547 -283.088536 323.07163 -443.529441 483.51254
## 2012.192      25.625985 -278.167934 329.41990 -438.986720 490.23869
## 2012.212      24.794881 -279.711200 329.30096 -440.906983 490.49674
## 2012.231      24.312182 -280.904400 329.52876 -442.476299 491.10066
## 2012.250      29.080870 -276.844562 335.00630 -438.791703 496.95344
## 2012.269      35.024190 -271.608454 341.65683 -433.929971 503.97835
## 2012.288      37.041637 -270.296591 344.37987 -432.991622 507.07490
## 2012.308      39.270488 -268.771709 347.31268 -431.839397 510.38037
## 2012.327      53.920351 -254.824209 362.66491 -418.263706 526.10441
## 2012.346      51.656898 -257.788431 361.10223 -421.598893 524.91269
## 2012.365      64.061793 -246.082721 374.20631 -410.263310 538.38690
## 2012.385      65.815334 -245.026793 376.65746 -409.576675 541.20734
## 2012.404      64.454999 -247.083179 375.99318 -412.001528 540.91153
## 2012.423      75.444938 -236.787739 387.67762 -402.073734 552.96361
## 2012.442      67.963023 -244.962611 380.88866 -410.615436 546.54148
## 2012.462      66.970114 -246.646947 380.58718 -412.665791 546.60602
## 2012.481      75.781653 -238.525314 390.08862 -404.909372 556.47268
## 2012.500      59.884169 -255.111192 374.87953 -421.859664 541.62800
## 2012.519      53.984432 -261.697823 369.66669 -428.809914 536.77878
## 2012.538      45.915809 -270.451848 362.28347 -437.926769 529.75839
## 2012.558      41.903997 -275.147580 358.95557 -442.984547 526.79254
## 2012.577      40.122940 -277.611085 357.85697 -445.809318 526.05520
## 2012.596      31.536403 -286.878607 349.95141 -455.437332 518.51014
## 2012.615      29.435157 -289.659386 348.52970 -458.577834 517.44815
## 2012.635      28.415468 -291.357163 348.18810 -460.634569 517.46551
## 2012.654      21.690707 -298.758578 342.13999 -468.394182 511.77560
## 2012.673      21.163282 -299.961230 342.28779 -469.954278 512.28084
## 2012.692      19.358314 -302.440009 341.15664 -472.789751 511.50638
## 2012.712      18.933342 -303.537383 341.40407 -474.243074 512.10976
## 2012.731      18.054301 -305.087428 341.19603 -476.148326 512.25693
## 2012.750      17.772087 -306.039256 341.58343 -477.454626 512.99880
## 2012.769      22.566164 -301.913410 347.04574 -473.682521 518.81485
## 2012.788      17.252242 -307.894189 342.39867 -480.016313 514.52080
## 2012.808      14.972688 -310.839237 340.78461 -483.313651 513.25903
## 2012.827      13.821469 -312.654592 340.29753 -485.480579 513.12352
## 2012.846      14.890692 -312.248157 342.02954 -485.425003 515.20639
## 2012.865      14.254589 -313.545709 342.05489 -487.072704 515.58188
## 2012.885      15.225717 -313.234696 343.68613 -487.111136 517.56257
## 2012.904      11.959911 -317.159295 341.07912 -491.384478 515.30430
## 2012.923       9.414579 -320.362103 339.19126 -494.935333 513.76449
## 2012.942      13.237085 -317.195764 343.66994 -492.116349 518.59052
## 2012.962       9.884584 -321.203133 340.97230 -496.470383 516.23955
## 2012.981       7.660451 -324.080841 339.40174 -499.694073 515.01498
## 2013.000       9.388098 -323.005483 341.78168 -498.964016 517.74021
## 2013.019       7.068660 -325.975933 340.11325 -502.279092 516.41641
## 2013.038       7.101557 -326.592779 340.79589 -503.239890 517.44300
plot(SJ_ets,xlab= "Time", ylab= "Total Cases")

#IQ#Stlf, Forecasting using stl objects:ETS
IQ_ets<-stlf(iqtot, method="ets", h=156)
summary(IQ_ets)
## 
## Forecast method: STL +  ETS(A,N,N)
## 
## Model Information:
## ETS(A,N,N) 
## 
## Call:
##  ets(y = x, model = etsmodel, allow.multiplicative.trend = allow.multiplicative.trend) 
## 
##   Smoothing parameters:
##     alpha = 0.6815 
## 
##   Initial states:
##     l = 1.732 
## 
##   sigma:  5.898
## 
##      AIC     AICc      BIC 
## 5103.597 5103.643 5116.358 
## 
## Error measures:
##                      ME     RMSE     MAE MPE MAPE      MASE       ACF1
## Training set 0.02301135 5.898046 3.63313 NaN  Inf 0.3848585 0.06083529
## 
## Forecasts:
##          Point Forecast      Lo 80     Hi 80      Lo 95     Hi 95
## 2010.115       2.265267  -5.293384  9.823917  -9.294692  13.82522
## 2010.135       3.711101  -5.435922 12.858123 -10.278063  17.70026
## 2010.154       2.534433  -7.963321 13.032186 -13.520496  18.58936
## 2010.173       3.566436  -8.127051 15.259924 -14.317210  21.45008
## 2010.192       4.751518  -8.026294 17.529329 -14.790459  24.29349
## 2010.212       3.989264  -9.787793 17.766320 -17.080926  25.05945
## 2010.231       4.526259 -10.182314 19.234831 -17.968561  27.02108
## 2010.250       6.064286  -9.520223 21.648795 -17.770163  29.89874
## 2010.269       4.195544 -12.218223 20.609311 -20.907146  29.29823
## 2010.288       4.917518 -12.285580 22.120615 -21.392349  31.22738
## 2010.308       8.099780  -9.857987 26.057546 -19.364254  35.56381
## 2010.327       7.715209 -10.966766 26.397184 -20.856406  36.28682
## 2010.346       7.932706 -11.446432 27.311845 -21.705128  37.57054
## 2010.365      15.303072  -4.749006 35.355150 -15.363935  45.97008
## 2010.385      12.754706  -7.948450 33.457861 -18.908038  44.41745
## 2010.404      19.840702  -1.493671 41.175075 -12.787406  52.46881
## 2010.423      14.213371  -7.734073 36.160814 -19.352348  47.77909
## 2010.442      17.567212  -4.976636 40.111061 -16.910628  52.04505
## 2010.462      14.582624  -8.542253 37.707501 -20.783823  49.94907
## 2010.481       9.725908 -13.965752 33.417567 -26.507359  45.95917
## 2010.500      10.978874 -13.266322 35.224071 -26.100954  48.05870
## 2010.519       9.607859 -15.178515 34.394234 -28.299630  47.51535
## 2010.538      12.241378 -13.074608 37.557365 -26.476082  50.95884
## 2010.558      15.321033 -10.513712 41.155777 -24.189799  54.83186
## 2010.577       8.679209 -17.664079 35.022497 -31.609374  48.96779
## 2010.596       3.228069 -23.614130 30.070268 -37.823531  44.27967
## 2010.615       8.482095 -18.849909 35.814099 -33.318599  50.28279
## 2010.635      23.642531  -4.170654 51.455716 -18.894065  66.17913
## 2010.654      14.666734 -13.619448 42.952916 -28.593249  57.92672
## 2010.673      23.628375  -5.123024 52.379773 -20.343095  67.59984
## 2010.692      24.910598  -4.298609 54.119804 -19.761029  69.58222
## 2010.712      25.026278  -4.633671 54.686226 -20.334699  70.38725
## 2010.731      16.859387 -13.244555 46.963330 -29.180620  62.89939
## 2010.750      20.468463 -10.073020 51.009946 -26.240704  67.17763
## 2010.769      17.702826 -13.270017 48.675669 -29.666049  65.07170
## 2010.788      14.054898 -17.343379 45.453175 -33.964623  62.07442
## 2010.808      10.658469 -21.159555 42.476493 -38.002999  59.31994
## 2010.827       9.971630 -22.260675 42.203934 -39.323426  59.26669
## 2010.846       8.052886 -24.588442 40.694213 -41.867717  57.97349
## 2010.865       8.741300 -24.303989 41.786588 -41.797108  59.27971
## 2010.885       7.305609 -26.138761 40.749980 -43.843141  58.45436
## 2010.904       5.757588 -28.081158 39.596334 -45.994308  57.50948
## 2010.923       6.995367 -27.233211 41.223945 -45.352726  59.34346
## 2010.942       4.319817 -30.294203 38.933836 -48.617758  57.25739
## 2010.962       4.394442 -30.600775 39.389658 -49.126124  57.91501
## 2010.981       5.533757 -29.838549 40.906062 -48.563516  59.63103
## 2011.000       4.579384 -31.166033 40.324801 -50.088513  59.24728
## 2011.019       5.064039 -31.050634 41.178713 -50.168587  60.29667
## 2011.038       5.295188 -31.185004 41.775381 -50.496452  61.08683
## 2011.058       3.049981 -33.792105 39.892066 -53.295127  59.39509
## 2011.077       2.927968 -34.272490 40.128426 -53.965223  59.82116
## 2011.096       3.270107 -34.285305 40.825518 -54.165938  60.70615
## 2011.115       2.265267 -35.641774 40.172307 -55.708549  60.23908
## 2011.135       3.711101 -34.544338 41.966539 -54.795543  62.21774
## 2011.154       2.534433 -36.066258 41.135124 -56.500230  61.56910
## 2011.173       3.566436 -35.376447 42.509320 -55.991565  63.12444
## 2011.192       4.751518 -34.530577 44.033613 -55.325263  64.82830
## 2011.212       3.989264 -35.629139 43.607666 -56.601854  64.58038
## 2011.231       4.526259 -35.425620 44.478138 -56.574867  65.62739
## 2011.250       6.064286 -34.218308 46.346881 -55.542626  67.67120
## 2011.269       4.195544 -36.415074 44.806162 -57.913036  66.30412
## 2011.288       4.917518 -36.018494 45.853530 -57.688710  67.52375
## 2011.308       8.099780 -33.159061 49.358620 -55.000171  71.19973
## 2011.327       7.715209 -33.863953 49.294372 -55.874632  71.30505
## 2011.346       7.932706 -33.964329 49.829741 -56.143279  72.00869
## 2011.365      15.303072 -26.909442 57.515586 -49.255398  79.86154
## 2011.385      12.754706 -29.770947 55.280359 -52.282668  77.79208
## 2011.404      19.840702 -22.995801 62.677205 -45.672076  85.35348
## 2011.423      14.213371 -28.931743 57.358484 -51.771386  80.19813
## 2011.442      17.567212 -25.884319 61.018744 -48.886171  84.02060
## 2011.462      14.582624 -29.173181 58.338429 -52.336105  81.50135
## 2011.481       9.725908 -34.332068 53.783884 -57.654952  77.10677
## 2011.500      10.978874 -33.379215 55.336964 -56.860969  78.81872
## 2011.519       9.607859 -35.048326 54.264045 -58.687883  77.90360
## 2011.538      12.241378 -32.710926 57.193683 -56.507239  80.99000
## 2011.558      15.321033 -29.925454 60.567519 -53.877497  84.51956
## 2011.577       8.679209 -36.859559 54.217976 -60.966326  78.32474
## 2011.596       3.228069 -42.601116 49.057254 -66.861620  73.31776
## 2011.615       8.482095 -37.635678 54.599868 -62.048953  79.01314
## 2011.635      23.642531 -22.762036 70.047098 -47.327130  94.61219
## 2011.654      14.666734 -32.022865 61.356332 -56.738846  86.07231
## 2011.673      23.628375 -23.344526 70.601276 -48.210478  95.46723
## 2011.692      24.910598 -22.343908 72.165103 -47.358932  97.18013
## 2011.712      25.026278 -22.508163 72.560719 -47.671376  97.72393
## 2011.731      16.859387 -30.953350 64.672125 -56.263885  89.98266
## 2011.750      20.468463 -27.620961 68.557887 -53.077964  94.01489
## 2011.769      17.702826 -30.661701 66.067354 -56.264336  91.66999
## 2011.788      14.054898 -34.583177 62.692973 -60.330619  88.44041
## 2011.808      10.658469 -38.251624 59.568562 -64.143063  85.46000
## 2011.827       9.971630 -39.208976 59.152236 -65.243616  85.18688
## 2011.846       8.052886 -41.396753 57.502525 -67.573811  83.67958
## 2011.865       8.741300 -40.975917 58.458516 -67.294621  84.77722
## 2011.885       7.305609 -42.677752 57.288971 -69.137346  83.74856
## 2011.904       5.757588 -44.490509 56.005685 -71.090245  82.60542
## 2011.923       6.995367 -43.516078 57.506812 -70.255222  84.24596
## 2011.942       4.319817 -46.453611 55.093244 -73.331439  81.97107
## 2011.962       4.394442 -46.639623 55.428506 -73.655424  82.44431
## 2011.981       5.533757 -45.759620 56.827134 -72.912694  83.98021
## 2012.000       4.579384 -46.972002 56.130769 -74.261657  83.42042
## 2012.019       5.064039 -46.744070 56.872148 -74.169626  84.29770
## 2012.038       5.295188 -46.768379 57.358755 -74.329166  84.91954
## 2012.058       3.049981 -49.267796 55.367758 -76.963155  83.06312
## 2012.077       2.927968 -49.642790 55.498726 -77.472069  83.32800
## 2012.096       3.270107 -49.552421 56.092634 -77.514978  84.05519
## 2012.115       2.265267 -50.807836 55.338370 -78.903040  83.43357
## 2012.135       3.711101 -49.611400 57.033601 -77.838627  85.26083
## 2012.154       2.534433 -51.036304 56.105170 -79.394940  84.46381
## 2012.173       3.566436 -50.251393 57.384265 -78.740830  85.87370
## 2012.192       4.751518 -49.312274 58.815309 -77.931916  87.43495
## 2012.212       3.989264 -50.319376 58.297903 -79.068633  87.04716
## 2012.231       4.526259 -50.026130 59.078648 -78.904421  87.95694
## 2012.250       6.064286 -48.730768 60.859341 -77.737517  89.86609
## 2012.269       4.195544 -50.841106 59.232194 -79.975748  88.36684
## 2012.288       4.917518 -50.359671 60.194707 -79.621647  89.45668
## 2012.308       8.099780 -47.416906 63.616466 -76.805665  93.00522
## 2012.327       7.715209 -48.039945 63.470364 -77.554941  92.98536
## 2012.346       7.932706 -48.059901 63.925314 -77.700597  93.56601
## 2012.365      15.303072 -40.925985 71.532129 -70.691850 101.29799
## 2012.385      12.754706 -43.709811 69.219223 -73.600321  99.10973
## 2012.404      19.840702 -36.858297 76.539701 -66.872935 106.55434
## 2012.423      14.213371 -42.719145 71.145886 -72.857398 101.28414
## 2012.442      17.567212 -39.597866 74.732291 -69.859230 104.99366
## 2012.462      14.582624 -42.814074 71.979322 -73.198051 102.36330
## 2012.481       9.725908 -47.901480 67.353295 -78.407576  97.85939
## 2012.500      10.978874 -46.878283 68.836031 -77.506011  99.46376
## 2012.519       9.607859 -48.478158 67.693877 -79.227039  98.44276
## 2012.538      12.241378 -46.072601 70.555358 -76.942158 101.42491
## 2012.558      15.321033 -43.220022 73.862087 -74.209784 104.85185
## 2012.577       8.679209 -50.088043 67.446461 -81.197547  98.55596
## 2012.596       3.228069 -55.764513 62.220651 -86.993299  93.44944
## 2012.615       8.482095 -50.734959 67.699149 -82.082574  99.04676
## 2012.635      23.642531 -35.798148 83.083210 -67.264143 114.54920
## 2012.654      14.666734 -44.996732 74.330200 -76.580663 105.91413
## 2012.673      23.628375 -36.257049 83.513798 -67.958477 115.21523
## 2012.692      24.910598 -35.195964 85.017159 -67.014456 116.83565
## 2012.712      25.026278 -35.300612 85.353167 -67.235738 117.28829
## 2012.731      16.859387 -43.687028 77.405803 -75.738364 109.45714
## 2012.750      20.468463 -40.296685 81.233611 -72.463811 113.40074
## 2012.769      17.702826 -43.280270 78.685923 -75.562771 110.96842
## 2012.788      14.054898 -47.145371 75.255167 -79.542836 107.65263
## 2012.808      10.658469 -50.758204 72.075142 -83.270226 104.58716
## 2012.827       9.971630 -51.660687 71.603947 -84.286865 104.23012
## 2012.846       8.052886 -53.794324 69.900095 -86.534259 102.64003
## 2012.865       8.741300 -53.320058 70.802658 -86.173357 103.65596
## 2012.885       7.305609 -54.969161 69.580379 -87.935433 102.54665
## 2012.904       5.757588 -56.729865 68.245041 -89.808725 101.32390
## 2012.923       6.995367 -55.704048 69.694781 -88.895113 102.88585
## 2012.942       4.319817 -58.590846 67.230479 -91.893739 100.53337
## 2012.962       4.394442 -58.726761 67.515644 -92.141107 100.92999
## 2012.981       5.533757 -57.797287 68.864800 -91.322716 102.39023
## 2013.000       4.579384 -58.960807 68.119575 -92.596952 101.75572
## 2013.019       5.064039 -58.684613 68.812692 -92.431111 102.55919
## 2013.038       5.295188 -58.661246 69.251623 -92.517738 103.10811
## 2013.058       3.049981 -61.113563 67.213524 -95.079691 101.17965
## 2013.077       2.927968 -61.442018 67.297954 -95.517431 101.37337
## 2013.096       3.270107 -61.305663 67.845876 -95.490010 102.03022
plot(IQ_ets,xlab= "Time", ylab= "Total Cases")
#Model 3: Submission
par(mfrow=c(1,2))
plot(SJ_ets,xlab= "Time", ylab= "Total Cases")
plot(IQ_ets,xlab= "Time", ylab= "Total Cases")

x3$total_cases[1:260]<-round(SJ_ets$mean)
x3$total_cases[261:416]<-round(IQ_ets$mean)


write.csv(x3, file="~/Desktop/sub..3.csv", row.names = FALSE)
#SCORE= 26.6683