** DATA_605_Discussion_14_Taylor_Series_Chapter_8.8_Problem_20 **
** Taylor_Series **
Chapter 8.8 , # 20
20). Use the Taylor series give in Key Idea 32 to verify the given identity.
Reference: see Example 271 in Chapter 8.8 of the Apex calculus text, Hartman (page 483)
Verify: d/dx(cos(x)) = - sin(x)
start with cos(x)
\[cos(x) = \Sigma_{i=1}^{\infty} (-1)^n * \frac {x^{2n}}{(2n)!}\]
take the derivative of cos(x):
\[\frac {d(cos(x))}{dx} = \frac {d}{dx} \Sigma_{i=1}^{\infty} (-1)^n * \frac {x^{2n}}{(2n)!}\] evaluate the derivative of the right side:
\[ = \Sigma_{i=1}^{\infty} (-1)^n * 2n * \frac {x^{2n-1}}{(2n)!}\]
expand the series:
\[ = -x + \frac {x^3}{3!} - \frac {x^5}{5!} + \frac {x^7}{7!} - ... \] take the negative of the series:
\[ = - [ x - \frac {x^3}{3!} + \frac {x^5}{5!} - \frac {x^7}{7!} + ...] \] substitute the series in the brackets for sin(x), and verification complete:
\[ = -sin(x)\]
** END **