Integrantes: -Anyela Tatiana Toro -Sandra Lorena Ibarguen -Wilmar Andres Trochez

library(readxl) X <- read_excel(“datos codificados jardin.csv.xlsx”) View(datos_codificados_jardin_csv)

PREGUNTA 6

library(ggplot2)
library(scales)
PMV<-X$PMV
newdata <- na.omit(PMV)
ggplot(data=data.frame(newdata),aes(x=newdata))+
geom_bar(aes(y = (..count..)),colour = "red",fill= "blue",width = .5)+
geom_text(aes(y = (..count..),label =   ifelse((..count..)==0,"",scales::percent((..count..)/sum(..count..)))), stat="bin",colour="black",vjust=-0.25)+
xlab("")+ 
ylab("Cantidad")+ theme(
axis.title.y = element_text(color="black", size=14, face="bold"))+ scale_x_continuous(breaks=c(0,1,2,3), labels=c("De acuerdo", "En desacuerdo","No tiene relevancia","No responde"))

PREGUNTA 7

pregunta_7<-X$IR
hist(pregunta_7, breaks = 4,main = "IR",col = "cadetblue2")

vector <- c(262/298, 4/298, 32/298) 
lbls <- c("Positivo", "Negativo","No tiene relevancia")
pct <- round(vector*100)
lbls <- paste(lbls, pct) # add percents to labels 
lbls <- paste(lbls,"%",sep="") # ad % to labels 
pie(vector,labels = lbls, col=rainbow(length(lbls)),
    main="IR")

PREGUNTA 8

pregunta_8<-X$TE
hist(pregunta_8, breaks = 4,main = "TE",col = "cadetblue2")

#vector <- c(xxx/298, xxx/298) 
lbls <- c("Abierto", "Cerrado")
pct <- round(vector*100)
lbls <- paste(lbls, pct) # add percents to labels 
lbls <- paste(lbls,"%",sep="") # ad % to labels 
pie(vector,labels = lbls, col=rainbow(length(lbls)),
    main="TE")

PREGUNTA 9

pregunta_9<-X$PAP
hist(pregunta_9, breaks = 4,main = "PAP",col = "cadetblue2")

vector <- c(230/298, 9/298,34/298, 25/298) 
lbls <- c("Positivo", "Negativo","Ni positivo, Ni negativo","No sabría")
pct <- round(vector*100)
lbls <- paste(lbls, pct) # add percents to labels 
lbls <- paste(lbls,"%",sep="") # ad % to labels 
pie(vector,labels = lbls, col=rainbow(length(lbls)),
    main="PAP")

PREGUNTA 10

pregunta_10<-X$AZV
hist(pregunta_10, breaks = 4,main = "AZV",col = "cadetblue2")

vector <- c(229/298, 68/298) 
lbls <- c("Si", "No")
pct <- round(vector*100)
lbls <- paste(lbls, pct) # add percents to labels 
lbls <- paste(lbls,"%",sep="") # ad % to labels 
pie(vector,labels = lbls, col=rainbow(length(lbls)),
    main="AZV")

LS0tDQp0aXRsZTogIkFOQUxJU0lTIEVTVEFESVNUSUNPIFBSRUdVTlRBUyA2LTEwIEVOQ1VFU1RBOkhBR0FNT1MgREUgTEEgVU5JVkFMTEUgVU4gSkFSRElOIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCkludGVncmFudGVzOiAgLUFueWVsYSBUYXRpYW5hIFRvcm8NCiAgICAgICAgICAgICAgLVNhbmRyYSBMb3JlbmEgSWJhcmd1ZW4NCiAgICAgICAgICAgICAgLVdpbG1hciBBbmRyZXMgVHJvY2hleg0KICAgICAgICAgICAgDQoNCmxpYnJhcnkocmVhZHhsKQ0KWCA8LSByZWFkX2V4Y2VsKCJkYXRvcyBjb2RpZmljYWRvcyBqYXJkaW4uY3N2Lnhsc3giKQ0KVmlldyhkYXRvc19jb2RpZmljYWRvc19qYXJkaW5fY3N2KQ0KDQpfX1BSRUdVTlRBIDZfXw0KYGBge3J9DQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KHNjYWxlcykNCg0KUE1WPC1YJFBNVg0KbmV3ZGF0YSA8LSBuYS5vbWl0KFBNVikNCg0KZ2dwbG90KGRhdGE9ZGF0YS5mcmFtZShuZXdkYXRhKSxhZXMoeD1uZXdkYXRhKSkrDQpnZW9tX2JhcihhZXMoeSA9ICguLmNvdW50Li4pKSxjb2xvdXIgPSAicmVkIixmaWxsPSAiYmx1ZSIsd2lkdGggPSAuNSkrDQpnZW9tX3RleHQoYWVzKHkgPSAoLi5jb3VudC4uKSxsYWJlbCA9ICAgaWZlbHNlKCguLmNvdW50Li4pPT0wLCIiLHNjYWxlczo6cGVyY2VudCgoLi5jb3VudC4uKS9zdW0oLi5jb3VudC4uKSkpKSwgc3RhdD0iYmluIixjb2xvdXI9ImJsYWNrIix2anVzdD0tMC4yNSkrDQp4bGFiKCIiKSsgDQp5bGFiKCJDYW50aWRhZCIpKyB0aGVtZSgNCmF4aXMudGl0bGUueSA9IGVsZW1lbnRfdGV4dChjb2xvcj0iYmxhY2siLCBzaXplPTE0LCBmYWNlPSJib2xkIikpKyBzY2FsZV94X2NvbnRpbnVvdXMoYnJlYWtzPWMoMCwxLDIsMyksIGxhYmVscz1jKCJEZSBhY3VlcmRvIiwgIkVuIGRlc2FjdWVyZG8iLCJObyB0aWVuZSByZWxldmFuY2lhIiwiTm8gcmVzcG9uZGUiKSkNCmBgYA0KX19QUkVHVU5UQSA3X18NCmBgYHtyfQ0KcHJlZ3VudGFfNzwtWCRJUg0KaGlzdChwcmVndW50YV83LCBicmVha3MgPSA0LG1haW4gPSAiSVIiLGNvbCA9ICJjYWRldGJsdWUyIikNCnZlY3RvciA8LSBjKDI2Mi8yOTgsIDQvMjk4LCAzMi8yOTgpIA0KbGJscyA8LSBjKCJQb3NpdGl2byIsICJOZWdhdGl2byIsIk5vIHRpZW5lIHJlbGV2YW5jaWEiKQ0KcGN0IDwtIHJvdW5kKHZlY3RvcioxMDApDQpsYmxzIDwtIHBhc3RlKGxibHMsIHBjdCkgIyBhZGQgcGVyY2VudHMgdG8gbGFiZWxzIA0KbGJscyA8LSBwYXN0ZShsYmxzLCIlIixzZXA9IiIpICMgYWQgJSB0byBsYWJlbHMgDQpwaWUodmVjdG9yLGxhYmVscyA9IGxibHMsIGNvbD1yYWluYm93KGxlbmd0aChsYmxzKSksDQogIAltYWluPSJJUiIpDQoNCmBgYA0KX19QUkVHVU5UQSA4X18NCmBgYHtyfQ0KcHJlZ3VudGFfODwtWCRURQ0KaGlzdChwcmVndW50YV84LCBicmVha3MgPSA0LG1haW4gPSAiVEUiLGNvbCA9ICJjYWRldGJsdWUyIikNCg0KI3ZlY3RvciA8LSBjKHh4eC8yOTgsIHh4eC8yOTgpIA0KbGJscyA8LSBjKCJBYmllcnRvIiwgIkNlcnJhZG8iKQ0KcGN0IDwtIHJvdW5kKHZlY3RvcioxMDApDQpsYmxzIDwtIHBhc3RlKGxibHMsIHBjdCkgIyBhZGQgcGVyY2VudHMgdG8gbGFiZWxzIA0KbGJscyA8LSBwYXN0ZShsYmxzLCIlIixzZXA9IiIpICMgYWQgJSB0byBsYWJlbHMgDQpwaWUodmVjdG9yLGxhYmVscyA9IGxibHMsIGNvbD1yYWluYm93KGxlbmd0aChsYmxzKSksDQogIAltYWluPSJURSIpDQpgYGANCl9fUFJFR1VOVEEgOV9fDQpgYGB7cn0NCnByZWd1bnRhXzk8LVgkUEFQDQpoaXN0KHByZWd1bnRhXzksIGJyZWFrcyA9IDQsbWFpbiA9ICJQQVAiLGNvbCA9ICJjYWRldGJsdWUyIikNCnZlY3RvciA8LSBjKDIzMC8yOTgsIDkvMjk4LDM0LzI5OCwgMjUvMjk4KSANCmxibHMgPC0gYygiUG9zaXRpdm8iLCAiTmVnYXRpdm8iLCJOaSBwb3NpdGl2bywgTmkgbmVnYXRpdm8iLCJObyBzYWJy7WEiKQ0KcGN0IDwtIHJvdW5kKHZlY3RvcioxMDApDQpsYmxzIDwtIHBhc3RlKGxibHMsIHBjdCkgIyBhZGQgcGVyY2VudHMgdG8gbGFiZWxzIA0KbGJscyA8LSBwYXN0ZShsYmxzLCIlIixzZXA9IiIpICMgYWQgJSB0byBsYWJlbHMgDQpwaWUodmVjdG9yLGxhYmVscyA9IGxibHMsIGNvbD1yYWluYm93KGxlbmd0aChsYmxzKSksDQogIAltYWluPSJQQVAiKQ0KDQpgYGANCl9fUFJFR1VOVEEgMTBfXw0KYGBge3J9DQpwcmVndW50YV8xMDwtWCRBWlYNCmhpc3QocHJlZ3VudGFfMTAsIGJyZWFrcyA9IDQsbWFpbiA9ICJBWlYiLGNvbCA9ICJjYWRldGJsdWUyIikNCg0KdmVjdG9yIDwtIGMoMjI5LzI5OCwgNjgvMjk4KSANCmxibHMgPC0gYygiU2kiLCAiTm8iKQ0KcGN0IDwtIHJvdW5kKHZlY3RvcioxMDApDQpsYmxzIDwtIHBhc3RlKGxibHMsIHBjdCkgIyBhZGQgcGVyY2VudHMgdG8gbGFiZWxzIA0KbGJscyA8LSBwYXN0ZShsYmxzLCIlIixzZXA9IiIpICMgYWQgJSB0byBsYWJlbHMgDQpwaWUodmVjdG9yLGxhYmVscyA9IGxibHMsIGNvbD1yYWluYm93KGxlbmd0aChsYmxzKSksDQogIAltYWluPSJBWlYiKQ0KYGBgDQo=