Results
prolr <- predict(bmodel$oridinalModels$polr,OAItestSet)
boxplot(as.numeric(as.character(prolr))~OAItestSet$BLKL)

tb <- table(prolr,OAItestSet$BLKL)
pander::pander(tb)
| 0 |
348 |
169 |
337 |
4 |
0 |
| 1 |
0 |
0 |
0 |
0 |
0 |
| 2 |
376 |
437 |
1220 |
251 |
1 |
| 3 |
4 |
15 |
100 |
534 |
51 |
| 4 |
0 |
1 |
2 |
32 |
106 |
kp <- kappa2(cbind(as.numeric(as.character(prolr)),OAItestSet$BLKL),"unweighted")
pander::pander(kp$value)
0.3481
prlin <- predict(bmodel$bagging$bagged.model,OAItestSet)
boxplot(prlin~OAItestSet$BLKL)

kp <- kappa2(cbind(as.integer(prlin+0.5),OAItestSet$BLKL),"unweighted")
pander::pander(kp$value)
0.1371
pr <- predict(bmodel$oridinalModels,OAItestSet)
boxplot(pr[,1]~OAItestSet$BLKL)

boxplot(pr[,2]~OAItestSet$BLKL)

summary(pr)
V1 V2 V3 V4
Min. :0.002008 Min. :0.00 Min. :0.5461 Min. :0.03236
1st Qu.:1.000556 1st Qu.:0.00 1st Qu.:0.6407 1st Qu.:0.64717
Median :1.996206 Median :2.00 Median :0.6716 Median :0.74075
Mean :1.834584 Mean :1.64 Mean :0.6980 Mean :0.74337
3rd Qu.:2.995752 3rd Qu.:3.00 3rd Qu.:0.7250 3rd Qu.:0.84453
Max. :4.000000 Max. :4.00 Max. :0.9996 Max. :0.99999
V5 V6
Min. :-0.9567 Min. :-0.99944
1st Qu.:-0.3864 1st Qu.:-0.32287
Median :-0.1410 Median :-0.02595
Mean :-0.0923 Mean :-0.01489
3rd Qu.: 0.1805 3rd Qu.: 0.31141
Max. : 0.9697 Max. : 0.96973
tb <- table(as.integer(pr[,1] + 0.5),as.integer(OAItestSet$BLKL))
pander::pander(tb)
| 0 |
326 |
151 |
306 |
10 |
0 |
| 1 |
100 |
100 |
257 |
39 |
2 |
| 2 |
271 |
292 |
813 |
41 |
0 |
| 3 |
30 |
77 |
280 |
702 |
47 |
| 4 |
1 |
2 |
3 |
29 |
109 |
tb <- table(as.integer(pr[,2] + 0.5),as.integer(OAItestSet$BLKL))
pander::pander(tb)
| 0 |
393 |
214 |
429 |
21 |
0 |
| 1 |
130 |
140 |
363 |
50 |
2 |
| 2 |
179 |
207 |
616 |
50 |
0 |
| 3 |
24 |
59 |
241 |
656 |
42 |
| 4 |
2 |
2 |
10 |
44 |
114 |
kp <- kappa2(cbind(as.integer(pr[,1] + 0.5),OAItestSet$BLKL),"unweighted")
pander::pander(kp$value)
0.34
kp <- kappa2(cbind(as.integer(pr[,2] + 0.5),OAItestSet$BLKL),"unweighted")
pander::pander(kp$value)
0.3179
#The Times
pander::pander(cputimes)
- Fresa: 17.17
- LASSO: 0.2015
- RF: 0.5525
- SVM: 0.0765
pander::pander(featsize)
- Fresa: 14
- LASSO: 31.25
- Univ: 36.1
plotMAEEvolution(cp,30,main="Mean Absolute Error (MAE)", location="topright")

bp <- barPlotCiError(as.matrix(cp$CorTable),metricname="Kendall Correlation",thesets=thesets,themethod=theMethod,main="Kendall Correlation",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"))

pander::pander(bp$barMatrix,caption = "Kendall Correlation",round = 3)
Kendall Correlation
| B:SWiMS |
0.439 |
| B:SWiMS(OLR) |
0.398 |
| B:SWiMS(SVM) |
0.424 |
| RF |
0.436 |
| RF(OLR) |
0.389 |
| RF(SVM) |
0.415 |
| LASSO |
0.448 |
| SVM |
0.428 |
| Univ.(SVM) |
0.425 |
| LASSO(SVM) |
0.427 |
pander::pander(bp$ciTable,caption = "Kendall Correlation with 95%CI",round = 3)
Kendall Correlation with 95%CI
| Regresion Method |
0.439 |
0.424 |
0.455 |
| Regresion Method |
0.398 |
0.396 |
0.4 |
| Regresion Method |
0.424 |
0.421 |
0.426 |
| Regresion Method |
0.436 |
0.434 |
0.439 |
| Regresion Method |
0.389 |
0.386 |
0.391 |
| Regresion Method |
0.415 |
0.412 |
0.417 |
| Regresion Method |
0.448 |
0.433 |
0.463 |
| Regresion Method |
0.428 |
0.426 |
0.431 |
| Regresion Method |
0.425 |
0.423 |
0.427 |
| Regresion Method |
0.427 |
0.424 |
0.429 |
bp <- barPlotCiError(as.matrix(cp$KappaTable),metricname="Kappa Agreement",thesets=thesets,themethod=theMethod,main="Kappa Agreement",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"))

pander::pander(bp$barMatrix,caption = "Kappa Agreement",round = 3)
Kappa Agreement
| B:SWiMS |
0.333 |
| B:SWiMS(OLR) |
0.335 |
| B:SWiMS(SVM) |
0.363 |
| RF |
0.356 |
| RF(OLR) |
0.33 |
| RF(SVM) |
0.342 |
| LASSO |
0.203 |
| SVM |
0.375 |
| Univ.(SVM) |
0.368 |
| LASSO(SVM) |
0.375 |
pander::pander(bp$ciTable,caption = "Kappa Agreement with 95%CI",round = 3)
Kappa Agreement with 95%CI
| Regresion Method |
0.333 |
0.317 |
0.348 |
| Regresion Method |
0.335 |
0.319 |
0.351 |
| Regresion Method |
0.363 |
0.347 |
0.379 |
| Regresion Method |
0.356 |
0.34 |
0.371 |
| Regresion Method |
0.33 |
0.315 |
0.346 |
| Regresion Method |
0.342 |
0.328 |
0.357 |
| Regresion Method |
0.203 |
0.189 |
0.217 |
| Regresion Method |
0.375 |
0.36 |
0.391 |
| Regresion Method |
0.368 |
0.352 |
0.384 |
| Regresion Method |
0.375 |
0.359 |
0.39 |
bp <- barPlotCiError(as.matrix(cp$MAETable),metricname="MAE",thesets=thesets,themethod=theMethod,main="MAE",offsets = c(0.5,5),args.legend = list(x = "bottomright"))

pander::pander(bp$barMatrix,caption = "MAE",round = 3)
MAE
| B:SWiMS |
0.678 |
| B:SWiMS(OLR) |
0.727 |
| B:SWiMS(SVM) |
0.682 |
| RF |
0.665 |
| RF(OLR) |
0.74 |
| RF(SVM) |
0.755 |
| LASSO |
0.693 |
| SVM |
0.669 |
| Univ.(SVM) |
0.674 |
| LASSO(SVM) |
0.67 |
pander::pander(bp$ciTable,caption = "MAE with 95%CI",round = 3)
MAE with 95%CI
| Regresion Method |
0.678 |
0.665 |
0.692 |
| Regresion Method |
0.727 |
0.713 |
0.742 |
| Regresion Method |
0.682 |
0.669 |
0.696 |
| Regresion Method |
0.665 |
0.652 |
0.679 |
| Regresion Method |
0.74 |
0.726 |
0.755 |
| Regresion Method |
0.755 |
0.74 |
0.77 |
| Regresion Method |
0.693 |
0.679 |
0.707 |
| Regresion Method |
0.669 |
0.656 |
0.682 |
| Regresion Method |
0.674 |
0.661 |
0.688 |
| Regresion Method |
0.67 |
0.657 |
0.684 |
bp <- barPlotCiError(as.matrix(cp$BiasTable),metricname="BIAS",thesets=thesets,themethod=theMethod,main="BIAS",offsets = c(0.5,0.5),args.legend = list(x = "bottomright"))

pander::pander(bp$barMatrix,caption = "BIAS",round = 3)
BIAS
| B:SWiMS |
0.165 |
| B:SWiMS(OLR) |
-0.175 |
| B:SWiMS(SVM) |
-0.085 |
| RF |
-0.08 |
| RF(OLR) |
-0.159 |
| RF(SVM) |
-0.265 |
| LASSO |
-0.113 |
| SVM |
-0.076 |
| Univ.(SVM) |
-0.068 |
| LASSO(SVM) |
-0.064 |
pander::pander(bp$ciTable,caption = "BIAS with 95%CI",round = 3)
BIAS with 95%CI
| Regresion Method |
0.165 |
0.136 |
0.193 |
| Regresion Method |
-0.175 |
-0.205 |
-0.144 |
| Regresion Method |
-0.085 |
-0.114 |
-0.055 |
| Regresion Method |
-0.08 |
-0.108 |
-0.052 |
| Regresion Method |
-0.159 |
-0.189 |
-0.128 |
| Regresion Method |
-0.265 |
-0.296 |
-0.235 |
| Regresion Method |
-0.113 |
-0.136 |
-0.09 |
| Regresion Method |
-0.076 |
-0.104 |
-0.047 |
| Regresion Method |
-0.068 |
-0.097 |
-0.039 |
| Regresion Method |
-0.064 |
-0.093 |
-0.035 |