library(datasets)
data(mtcars)
summary(mtcars)
## mpg cyl disp hp
## Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
## 1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
## Median :19.20 Median :6.000 Median :196.3 Median :123.0
## Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
## 3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
## Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
## drat wt qsec vs
## Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000
## 1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000
## Median :3.695 Median :3.325 Median :17.71 Median :0.0000
## Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375
## 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
## Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000
## am gear carb
## Min. :0.0000 Min. :3.000 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
## Median :0.0000 Median :4.000 Median :2.000
## Mean :0.4062 Mean :3.688 Mean :2.812
## 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :1.0000 Max. :5.000 Max. :8.000
mtcars data set that have different carb values. ‘Printing’ the dataset, and creating a table isolating the ‘carb’ variable.print(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
factor(mtcars$carb)
## [1] 4 4 1 1 2 1 4 2 2 4 4 3 3 3 4 4 4 1 2 1 1 2 2 4 2 1 2 2 4 6 8 2
## Levels: 1 2 3 4 6 8
w = table(mtcars$carb)
w
##
## 1 2 3 4 6 8
## 7 10 3 10 1 1
We could also use the easier way with the ‘plyr’ package and the function count().
library(plyr)
## Warning: package 'plyr' was built under R version 3.4.4
count(mtcars, 'carb')
## carb freq
## 1 1 7
## 2 2 10
## 3 3 3
## 4 4 10
## 5 6 1
## 6 8 1
carb.frequency <- table(mtcars$carb)
lbls <- names(carb.frequency)
pct <- round(carb.frequency/sum(carb.frequency)*100)
lbls <- paste(lbls, pct)
lbls <- paste(lbls,"%",sep="")
pie(carb.frequency,labels = lbls,col=rainbow(length(lbls)), main="Cars/Carb Distribution")
We notice that there is no cars with 5 or 7 carburetors. So, we can create the pie chart from here. There are 32 observations in the dataset, so: 7/32 = 0.21875 = 21.875% 10/32 = 0.3125 = 31.25% 3/32 = 0.09375 = 9.375% 10//32 = 0.3125 = 31.25% 1/32 = 0.03125 = 3.125% 1/32 = 0.03125 = 3.125%
knitr::include_graphics("image1.jpeg")
gear type in mtcars. Using the ‘count’ function:count(mtcars, 'gear')
## gear freq
## 1 3 15
## 2 4 12
## 3 5 5
count <- table(mtcars$gear)
barplot(count, main="Car Distribution", xlab="Gears",ylab="Cars",names.arg=c("3", "4", "5"),cex.names=0.8,col=c("green","red","blue"))
knitr::include_graphics("image4.jpeg")
This bar chart indicates that there are more 3 gear cars (15) than 4 gear cars (12) and 5 gear cars (5).
gear type and how they are further divided out by cyl.counts <- table(mtcars$cyl, mtcars$gear)
barplot(counts, main="Cars by Gears / Cylinders",
xlab="Gears",
names.arg=c("3", "4", "5"),
cex.names=0.8,
ylab="Cars",
col=c("red","blue","green"),
legend = rownames(counts))
Cars with 3 gears and 8 cylinders are equal to the total of 4 gear cars. The number of cars with 4 gears and 4 cylinders and the double of cars with 4 gears and 6 cylinders. There is the same number of car with 3 gears and 4 cylinders as cars with 5 gears and 6 cylinders.
knitr::include_graphics("image3.jpeg")
wt and mpg.plot(mtcars$wt, mtcars$mpg, main="Weight VS Mpg",
xlab="Weight", ylab="MPG", pch=16)
abline(lm(mtcars$mpg~mtcars$wt), col="green")
lines(lowess(mtcars$wt,mtcars$mpg), col="blue")
The green line represents the linear regression, and the blue line represents also the lowess. Both lines show a negative correlation between the weight of the cars and the consumption in miles per gallon. The heavier a car is, the more fuel it consumes.
plot(mtcars$hp, mtcars$mpg, main="Horsepower vs MPG", xlab="Horsepower", ylab="MPG", pch=21, bg="blue")