dieta<- read.table("dieta.csv", header = TRUE, sep = ";")
dieta$tipoDiet <- factor(dieta$tipoDiet)
dieta$edad <- factor (dieta$edad)
str(dieta)
## 'data.frame': 24 obs. of 6 variables:
## $ id : int 1 2 3 4 5 6 7 8 9 10 ...
## $ edad : Factor w/ 3 levels "1","2","3": 3 3 2 2 1 2 3 1 2 1 ...
## $ tipoDiet: Factor w/ 3 levels "1","2","3": 1 1 3 3 1 1 1 1 2 3 ...
## $ peso0 : num 122 140.9 110.5 120.7 82.7 ...
## $ peso1 : num 108.6 89.2 115.4 106.2 96.5 ...
## $ peso2 : num 90.9 88.9 100.4 105.3 91.9 ...
shapiro.test(dieta$peso0[dieta$edad==1])
##
## Shapiro-Wilk normality test
##
## data: dieta$peso0[dieta$edad == 1]
## W = 0.853, p-value = 0.1022
shapiro.test(dieta$peso0[dieta$edad==2])
##
## Shapiro-Wilk normality test
##
## data: dieta$peso0[dieta$edad == 2]
## W = 0.83071, p-value = 0.06038
shapiro.test(dieta$peso0[dieta$edad==3])
##
## Shapiro-Wilk normality test
##
## data: dieta$peso0[dieta$edad == 3]
## W = 0.92652, p-value = 0.4849
bartlett.test( dieta$peso0 ~ dieta$edad )
##
## Bartlett test of homogeneity of variances
##
## data: dieta$peso0 by dieta$edad
## Bartlett's K-squared = 0.43715, df = 2, p-value = 0.8037
peso0_Edad <- aov(dieta$peso0 ~ dieta$edad)
summary (peso0_Edad)
## Df Sum Sq Mean Sq F value Pr(>F)
## dieta$edad 2 2544 1272.0 13.46 0.000173 ***
## Residuals 21 1985 94.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
pairwise.t.test( dieta$peso0, dieta$edad, p.adj = "holm")
##
## Pairwise comparisons using t tests with pooled SD
##
## data: dieta$peso0 and dieta$edad
##
## 1 2
## 2 0.11324 -
## 3 0.00015 0.00501
##
## P value adjustment method: holm
shapiro.test(dieta$peso2[dieta$edad==1])
##
## Shapiro-Wilk normality test
##
## data: dieta$peso2[dieta$edad == 1]
## W = 0.91981, p-value = 0.4284
shapiro.test(dieta$peso2[dieta$edad==2])
##
## Shapiro-Wilk normality test
##
## data: dieta$peso2[dieta$edad == 2]
## W = 0.9739, p-value = 0.9267
shapiro.test(dieta$peso2[dieta$edad==3])
##
## Shapiro-Wilk normality test
##
## data: dieta$peso2[dieta$edad == 3]
## W = 0.91386, p-value = 0.382
bartlett.test(dieta$peso2 ~ dieta$edad)
##
## Bartlett test of homogeneity of variances
##
## data: dieta$peso2 by dieta$edad
## Bartlett's K-squared = 3.4329, df = 2, p-value = 0.1797
shapiro.test(dieta$peso2[dieta$tipoDiet==1])
##
## Shapiro-Wilk normality test
##
## data: dieta$peso2[dieta$tipoDiet == 1]
## W = 0.90802, p-value = 0.3403
shapiro.test(dieta$peso2[dieta$tipoDiet==2])
##
## Shapiro-Wilk normality test
##
## data: dieta$peso2[dieta$tipoDiet == 2]
## W = 0.91767, p-value = 0.4113
shapiro.test(dieta$peso2[dieta$tipoDiet==3])
##
## Shapiro-Wilk normality test
##
## data: dieta$peso2[dieta$tipoDiet == 3]
## W = 0.96944, p-value = 0.8936
bartlett.test( dieta$peso2 ~ dieta$tipoDiet )
##
## Bartlett test of homogeneity of variances
##
## data: dieta$peso2 by dieta$tipoDiet
## Bartlett's K-squared = 1.5668, df = 2, p-value = 0.4568
peso2_edad_tipodieta <- aov( dieta$peso2 ~ dieta$edad * dieta$tipoDiet )
summary(peso2_edad_tipodieta)
## Df Sum Sq Mean Sq F value Pr(>F)
## dieta$edad 2 84.2 42.1 1.320 0.296
## dieta$tipoDiet 2 1391.1 695.5 21.823 3.62e-05 ***
## dieta$edad:dieta$tipoDiet 4 160.0 40.0 1.255 0.331
## Residuals 15 478.1 31.9
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interaction.plot( dieta$edad, dieta$tipoDiet, dieta$peso2,
col = c( "blue", "red","green" ),
lty = c( 1,12 , 9 ),
lwd = 3,
ylab = "media del valor antes",
xlab = "Edad", trace.label = "Tipo de Dieta")
help("interaction.plot")
## starting httpd help server ... done
library( reshape2 )
## Warning: package 'reshape2' was built under R version 3.4.4
dieta_Rest <- melt( dieta, id = c( "id", "edad", "tipoDiet" ),
measure = c( "peso0", "peso1", "peso2" ),
variable.name = "periodo",
value.name = "peso" )
head( dieta_Rest )
## id edad tipoDiet periodo peso
## 1 1 3 1 peso0 122.01756
## 2 2 3 1 peso0 140.86780
## 3 3 2 3 peso0 110.52651
## 4 4 2 3 peso0 120.74844
## 5 5 1 1 peso0 82.73085
## 6 6 2 1 peso0 118.06524
shapiro.test( dieta$peso0 )
##
## Shapiro-Wilk normality test
##
## data: dieta$peso0
## W = 0.98105, p-value = 0.9144
shapiro.test( dieta$peso1 )
##
## Shapiro-Wilk normality test
##
## data: dieta$peso1
## W = 0.97138, p-value = 0.7012
shapiro.test( dieta$peso2 )
##
## Shapiro-Wilk normality test
##
## data: dieta$peso2
## W = 0.96016, p-value = 0.4417
library(ez)
## Warning: package 'ez' was built under R version 3.4.4
options( contrasts = c( "contr.sum", "contr.poly" ) )
ezANOVA( data = dieta_Rest, dv = peso,
wid = id, within = periodo,
type = 3 )
## Warning: Converting "id" to factor for ANOVA.
## $ANOVA
## Effect DFn DFd F p p<.05 ges
## 2 periodo 2 46 9.007468 0.0004999883 * 0.2143998
##
## $`Mauchly's Test for Sphericity`
## Effect W p p<.05
## 2 periodo 0.9348576 0.4766505
##
## $`Sphericity Corrections`
## Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
## 2 periodo 0.9388416 0.0006806327 * 1.019405 0.0004999883 *
pairwise.t.test( dieta_Rest$peso, dieta_Rest$periodo, p.adj = "holm")
##
## Pairwise comparisons using t tests with pooled SD
##
## data: dieta_Rest$peso and dieta_Rest$periodo
##
## peso0 peso1
## peso1 0.04112 -
## peso2 0.00015 0.05374
##
## P value adjustment method: holm
william <- read.table("william.csv", header = TRUE, sep = ";")
shapiro.test(william$salario)
##
## Shapiro-Wilk normality test
##
## data: william$salario
## W = 0.93541, p-value = 0.3281
cor.test(william$ausencias, william$salario)
##
## Pearson's product-moment correlation
##
## data: william$ausencias and william$salario
## t = -7.4737, df = 13, p-value = 4.672e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9668476 -0.7211085
## sample estimates:
## cor
## -0.9006674
plot(william$ausencias, william$salario)
# b. Realiza el ajuste del modelo.
nuev_modelo<-lm(william$salario ~ william$ausencias)
nuev_modelo
##
## Call:
## lm(formula = william$salario ~ william$ausencias)
##
## Coefficients:
## (Intercept) william$ausencias
## 14.1778 -0.2696
plot(william$ausencias, william$salario)
abline(nuev_modelo)
#Estudia la bondad de ajuste con la función anova() y explica el significado de los coeficientes obtenidos en la recta de regresión.
summary(nuev_modelo)
##
## Call:
## lm(formula = william$salario ~ william$ausencias)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2126 -0.8257 0.3698 0.7134 1.6743
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.17778 0.99927 14.188 2.74e-09 ***
## william$ausencias -0.26956 0.03607 -7.474 4.67e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.285 on 13 degrees of freedom
## Multiple R-squared: 0.8112, Adjusted R-squared: 0.7967
## F-statistic: 55.86 on 1 and 13 DF, p-value: 4.672e-06
anova(nuev_modelo)
## Analysis of Variance Table
##
## Response: william$salario
## Df Sum Sq Mean Sq F value Pr(>F)
## william$ausencias 1 92.261 92.261 55.857 4.672e-06 ***
## Residuals 13 21.473 1.652
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Normalidad de los residuos, homogeneidad de varianzas e # incorrelación de los residuos.
william$fitted.nuev_modelo <- fitted( nuev_modelo )
william$residuals.nuev_modelo <- residuals( nuev_modelo )
william$rstudent.nuev_modelo <- rstudent( nuev_modelo )
shapiro.test(william$rstudent.nuev_modelo)
##
## Shapiro-Wilk normality test
##
## data: william$rstudent.nuev_modelo
## W = 0.94304, p-value = 0.4222
library(lmtest)
## Warning: package 'lmtest' was built under R version 3.4.4
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.4.4
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(zoo)
bptest(nuev_modelo)
##
## studentized Breusch-Pagan test
##
## data: nuev_modelo
## BP = 0.25945, df = 1, p-value = 0.6105
dwtest(william$salario ~ william$ausencias, alternative = "two.sided", data = william)
##
## Durbin-Watson test
##
## data: william$salario ~ william$ausencias
## DW = 2.2983, p-value = 0.5582
## alternative hypothesis: true autocorrelation is not 0
sessionInfo()
## R version 3.4.3 (2017-11-30)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 7 x64 (build 7601) Service Pack 1
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Spanish_Ecuador.1252 LC_CTYPE=Spanish_Ecuador.1252
## [3] LC_MONETARY=Spanish_Ecuador.1252 LC_NUMERIC=C
## [5] LC_TIME=Spanish_Ecuador.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] lmtest_0.9-36 zoo_1.8-1 ez_4.4-0 reshape2_1.4.3
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.15 nloptr_1.0.4 compiler_3.4.3
## [4] pillar_1.2.1 cellranger_1.1.0 plyr_1.8.4
## [7] forcats_0.3.0 tools_3.4.3 lme4_1.1-17
## [10] digest_0.6.15 gtable_0.2.0 evaluate_0.10.1
## [13] tibble_1.4.2 nlme_3.1-131 lattice_0.20-35
## [16] mgcv_1.8-22 rlang_0.2.0 openxlsx_4.0.17
## [19] Matrix_1.2-12 curl_3.2 yaml_2.1.18
## [22] haven_1.1.1 rio_0.5.10 stringr_1.3.0
## [25] knitr_1.20 rprojroot_1.3-2 grid_3.4.3
## [28] data.table_1.10.4-3 readxl_1.0.0 foreign_0.8-69
## [31] rmarkdown_1.9 minqa_1.2.4 carData_3.0-1
## [34] ggplot2_2.2.1 car_3.0-0 magrittr_1.5
## [37] MASS_7.3-47 splines_3.4.3 scales_0.5.0
## [40] backports_1.1.2 htmltools_0.3.6 abind_1.4-5
## [43] colorspace_1.3-2 stringi_1.1.6 lazyeval_0.2.1
## [46] munsell_0.4.3