m<-read.csv("Matriz12.csv")
library(ggplot2)
ggplot(data=m, aes(m$ESTATURA)) + geom_histogram(breaks=seq(1.5, 1.9, by = 0.1),col="red", fill="green")

ggplot(data=m, aes(m$ESTATURA)) + geom_histogram(breaks=seq(1.5, 1.9, by = 0.1),col="red", fill="green") + ggtitle("HISTOGRAMA DE ESTATURA") + xlab("ESTATURA")

ggplot(data=m, aes(m$ESTATURA)) + geom_histogram(breaks=seq(1.5, 1.9, by = 0.1),col="red", fill="green") + ggtitle("HISTOGRAMA DE ESTATURA") + xlab("ESTATURA") + labs(x="ESTATURA", y="FRECUENCIA")

ggplot(data=m, aes(m$ESTATURA)) + geom_histogram(breaks=seq(1.5, 1.9, by = 0.1),col="red", fill="green") + ggtitle("HISTOGRAMA DE ESTATURA") + xlab("ESTATURA") + labs(x="ESTATURA", y="FRECUENCIA") + geom_density(col="black") + ggtitle("HISTOGRAMA DE ESTATURA") + xlab("ESTATURA") + labs(x="ESTATURA", y="FRECUENCIA")

ggplot(data=m, aes(m$ESTATURA)) + geom_histogram(breaks=seq(1.5, 1.9, by = 0.1),col="red", fill="green") + ggtitle("HISTOGRAMA DE ESTATURA") + xlab("ESTATURA") + labs(x="ESTATURA", y="FRECUENCIA") + geom_density(col="black") + ggtitle("HISTOGRAMA DE ESTATURA") + xlab("ESTATURA") + labs(x="ESTATURA", y="FRECUENCIA") + geom_vline ( aes (xintercept = mean ( ESTATURA , na.rm = T )), col = "blue" , linetype = "dashed" , size = 1 )

ggplot(data=m, aes(m$ESTATURA)) + geom_histogram(breaks=seq(1.5, 1.9, by = 0.1),col="red", fill="green") + ggtitle("HISTOGRAMA DE ESTATURA") + xlab("ESTATURA") + labs(x="ESTATURA", y="FRECUENCIA") +  geom_vline ( aes (xintercept = mean ( ESTATURA , na.rm = T )), col = "blue" , linetype = "dashed" , size = 1 ) +  geom_density(col="black") + ggtitle("HISTOGRAMA DE ESTATURA") + xlab("ESTATURA") + labs(x="ESTATURA", y="FRECUENCIA")

NA
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCmBgYHtyfQ0KbTwtcmVhZC5jc3YoIk1hdHJpejEyLmNzdiIpDQpsaWJyYXJ5KGdncGxvdDIpDQpnZ3Bsb3QoZGF0YT1tLCBhZXMobSRFU1RBVFVSQSkpICsgZ2VvbV9oaXN0b2dyYW0oYnJlYWtzPXNlcSgxLjUsIDEuOSwgYnkgPSAwLjEpLGNvbD0icmVkIiwgZmlsbD0iZ3JlZW4iKQ0KZ2dwbG90KGRhdGE9bSwgYWVzKG0kRVNUQVRVUkEpKSArIGdlb21faGlzdG9ncmFtKGJyZWFrcz1zZXEoMS41LCAxLjksIGJ5ID0gMC4xKSxjb2w9InJlZCIsIGZpbGw9ImdyZWVuIikgKyBnZ3RpdGxlKCJISVNUT0dSQU1BIERFIEVTVEFUVVJBIikgKyB4bGFiKCJFU1RBVFVSQSIpDQpnZ3Bsb3QoZGF0YT1tLCBhZXMobSRFU1RBVFVSQSkpICsgZ2VvbV9oaXN0b2dyYW0oYnJlYWtzPXNlcSgxLjUsIDEuOSwgYnkgPSAwLjEpLGNvbD0icmVkIiwgZmlsbD0iZ3JlZW4iKSArIGdndGl0bGUoIkhJU1RPR1JBTUEgREUgRVNUQVRVUkEiKSArIHhsYWIoIkVTVEFUVVJBIikgKyBsYWJzKHg9IkVTVEFUVVJBIiwgeT0iRlJFQ1VFTkNJQSIpDQpnZ3Bsb3QoZGF0YT1tLCBhZXMobSRFU1RBVFVSQSkpICsgZ2VvbV9oaXN0b2dyYW0oYnJlYWtzPXNlcSgxLjUsIDEuOSwgYnkgPSAwLjEpLGNvbD0icmVkIiwgZmlsbD0iZ3JlZW4iKSArIGdndGl0bGUoIkhJU1RPR1JBTUEgREUgRVNUQVRVUkEiKSArIHhsYWIoIkVTVEFUVVJBIikgKyBsYWJzKHg9IkVTVEFUVVJBIiwgeT0iRlJFQ1VFTkNJQSIpICsgZ2VvbV9kZW5zaXR5KGNvbD0iYmxhY2siKSArIGdndGl0bGUoIkhJU1RPR1JBTUEgREUgRVNUQVRVUkEiKSArIHhsYWIoIkVTVEFUVVJBIikgKyBsYWJzKHg9IkVTVEFUVVJBIiwgeT0iRlJFQ1VFTkNJQSIpDQpnZ3Bsb3QoZGF0YT1tLCBhZXMobSRFU1RBVFVSQSkpICsgZ2VvbV9oaXN0b2dyYW0oYnJlYWtzPXNlcSgxLjUsIDEuOSwgYnkgPSAwLjEpLGNvbD0icmVkIiwgZmlsbD0iZ3JlZW4iKSArIGdndGl0bGUoIkhJU1RPR1JBTUEgREUgRVNUQVRVUkEiKSArIHhsYWIoIkVTVEFUVVJBIikgKyBsYWJzKHg9IkVTVEFUVVJBIiwgeT0iRlJFQ1VFTkNJQSIpICsgZ2VvbV9kZW5zaXR5KGNvbD0iYmxhY2siKSArIGdndGl0bGUoIkhJU1RPR1JBTUEgREUgRVNUQVRVUkEiKSArIHhsYWIoIkVTVEFUVVJBIikgKyBsYWJzKHg9IkVTVEFUVVJBIiwgeT0iRlJFQ1VFTkNJQSIpICsgZ2VvbV92bGluZSAoIGFlcyAoeGludGVyY2VwdCA9IG1lYW4gKCBFU1RBVFVSQSAsIG5hLnJtID0gVCApKSwgY29sID0gImJsdWUiICwgbGluZXR5cGUgPSAiZGFzaGVkIiAsIHNpemUgPSAxICkNCmdncGxvdChkYXRhPW0sIGFlcyhtJEVTVEFUVVJBKSkgKyBnZW9tX2hpc3RvZ3JhbShicmVha3M9c2VxKDEuNSwgMS45LCBieSA9IDAuMSksY29sPSJyZWQiLCBmaWxsPSJncmVlbiIpICsgZ2d0aXRsZSgiSElTVE9HUkFNQSBERSBFU1RBVFVSQSIpICsgeGxhYigiRVNUQVRVUkEiKSArIGxhYnMoeD0iRVNUQVRVUkEiLCB5PSJGUkVDVUVOQ0lBIikgKyAgZ2VvbV92bGluZSAoIGFlcyAoeGludGVyY2VwdCA9IG1lYW4gKCBFU1RBVFVSQSAsIG5hLnJtID0gVCApKSwgY29sID0gImJsdWUiICwgbGluZXR5cGUgPSAiZGFzaGVkIiAsIHNpemUgPSAxICkgKyAgZ2VvbV9kZW5zaXR5KGNvbD0iYmxhY2siKSArIGdndGl0bGUoIkhJU1RPR1JBTUEgREUgRVNUQVRVUkEiKSArIHhsYWIoIkVTVEFUVVJBIikgKyBsYWJzKHg9IkVTVEFUVVJBIiwgeT0iRlJFQ1VFTkNJQSIpDQoNCg0KDQoNCiANCg0KDQpgYGANCg0KDQo=