Materials and methods

Statistical analysis

Quantitative variable are expressed as mean±sd. In order to overule pseudoreplication due to repeated measurement to the same animal, mixed effect regression models were use built with nlme package. In these cases, the animal was included as a random intercept. Model marginal (related to fixed factors) and conditional coefficients (evaluates both fixed and random factors) of determination for mixed-effect models were calculated using MuMIn package. A similar approach was used when fitting analysis of variance models.
Statistical analysis was performed with R version 3.3.3 (2017-03-06).

Results

Baseline respiratory parameters were as follows: Vt=295±83.95 ml, PaFiO2=125.68±70.16 mmHg, pH=7.2±0.06, PaCO2=62.09±13.63 mmHg, inspiratory static PAW=31.43±4.15 cmH2O and compliance=14.51±5.48 ml/cmH2O.

Measurements by PEEP

Table 1: Measurements by PEEP level

Baseline 0 5 10 15 20 25 30 P
Airway mechanics
Tvem 295±83.95 303.02±82.56 293.18±85.71 299.66±83.02 300.55±82.66 298.64±83.97 301.32±83.4 297.1±91.46 0.12
Pplat 31.43±4.15 33.32±5.94 34.02±5.58 33.62±4.32 35.49±5.07 40.46±4.68 48.1±7.19 57.59±8.31 <0.001
PEEPtot 10.21±0.98 2.25±2.07 6.07±1.01 10.74±1.19 15.86±0.85 20.8±0.65 25.78±0.73 30.64±0.91 <0.001
DeltaPAirway 21.22±4.32 31.07±6.63 27.95±5.78 22.88±4.59 19.62±4.84 19.66±4.77 22.32±7.41 26.96±8.66 <0.001
CStatic 14.51±5.48 9.97±2.9 10.74±3.55 13.42±4.03 15.82±5.01 15.75±5.25 14.67±6.25 12.16±6.75 <0.001
Raw 27.1±11.17 38.18±7.93 35.54±5.92 25.38±6.4 23.81±4.85 22.14±5.38 22.06±4.62 19.97±7.26 <0.001
Transpulmonary mechanics
Ptp-insp 16.94±5.22 19.33±4.31 19.87±4.38 17.9±3.88 19.2±3.13 21.76±4.48 25.66±5.54 33.31±4.5 <0.001
Ptp-esp -0.7±6.06 -8.11±7.03 -3.82±6.5 -1.06±5.91 3.18±4.95 6.23±5.27 9.29±5.24 12.54±5.79 <0.001
DeltaPTp 17.64±3.89 27.44±6.69 23.69±5.68 18.96±4.78 16.02±4.54 15.54±4.75 16.37±4.47 20.77±5.5 <0.001
Etorax 1.22±0.7 1.51±0.48 1.67±0.51 1.34±0.5 1.31±0.5 1.37±0.94 1.62±0.96 1.78±1.05 0.228
Ep 5.93±1.7 8.96±2.79 7.99±2.51 6.21±1.74 5.19±1.59 5.13±1.68 5.36±1.73 6.95±2.35 <0.001
Etot 7.15±2.24 10.47±2.92 9.66±2.85 7.55±2 6.5±1.98 6.5±1.89 6.98±2.14 8.73±2.88 <0.001
Gas exchange
PH 7.2±0.06 7.16±0.06 7.16±0.08 7.2±0.06 7.21±0.07 7.2±0.08 7.23±0.09 7.2±0.06 <0.001
Pa/FiO2 125.68±70.16 50.95±22.01 54.74±19.54 105.72±58.81 215.75±124.33 332.49±169.2 548.55±140.55 571.19±56.03 <0.001
PaCO2 62.09±13.63 72.59±15.88 70.55±12.32 64.7±13.91 60.74±10.74 60.62±12.77 57.55±15.7 59.37±14.34 <0.001
Pa-ACO2 29.98±7.86 51.43±12.88 46.21±10.9 37.31±10.95 29.77±10.21 29.3±8.06 25.29±4.95 25.35±4.26 <0.001
PA-aO2 509.7±65.58 571.31±30.27 570.07±28.35 526.41±60.52 421.33±125.55 304.74±166.03 96.92±129.11 67.6±50.19 <0.001
Dead space
Bohr 0.52±0.05 0.51±0.08 0.52±0.09 0.53±0.06 0.55±0.05 0.61±0.07 0.65±0.08 0.69±0.1 <0.001
Vdphys 150.5±41.47 149.33±48.88 147.74±45.8 155.5±42.02 166.8±47.34 178.48±49.81 190.97±56.04 198.6±59.73 <0.001
Vdaw/VT 0.33±0.09 0.32±0.08 0.35±0.1 0.33±0.1 0.39±0.07 0.44±0.1 0.48±0.11 0.53±0.13 <0.001
VDaw 103.77±31.93 93.73±33.11 99.08±33.66 108.09±32.82 118.01±40.12 129.28±42.72 140.44±47.85 150.2±50.4 <0.001
VdalV/VTalV 0.25±0.03 0.27±0.05 0.26±0.05 0.25±0.02 0.27±0.03 0.3±0.03 0.33±0.03 0.35±0.06 <0.001
VTalV 187.81±60.65 202.79±64.6 192.65±67.85 190.31±61.41 183.44±53.01 167.5±58.1 158.08±56.54 142.77±63.18 <0.001
VdB-E/Vt 0.76±0.05 0.86±0.02 0.83±0.06 0.8±0.06 0.77±0.05 0.8±0.03 0.81±0.04 0.84±0.04 <0.001
VdalvB-E/Vtalv 0.64±0.13 0.79±0.04 0.75±0.11 0.71±0.12 0.61±0.11 0.63±0.07 0.64±0.07 0.65±0.12 <0.001
Hemodynamics
FC 122.18±31.5 114.27±25.71 121.18±31.86 119.73±30.28 116.36±33.75 122.64±35.54 127.91±35.4 122.2±36.07 0.825
TAM 93.27±14.33 94±30.1 96.45±29.04 94.82±17.57 94.27±18.3 90.73±14.17 81.09±17.41 78.9±14.25 0.058
IC 3.12±1.08 4.84±1.1 3.68±1.13 4.22±0.32 3.58±0.9 3.42±1.28 3.76±1.5 2.98±1.1 0.112
VVS 8.25±2.38 6.5±2.56 6.5±1.77 7.25±1.49 9.62±3.89 15.38±6.16 19±9.77 29.57±14.36 <0.001
Pulse pressure 40.73±14.06 51.45±7.58 48.18±10.76 48.36±6.98 49.36±12.64 38.45±11.66 34.27±9.95 34±7.63 <0.001
Lung ultrasound
Dorsal 8 (8-8) 8 (8-8) 8 (8-8) 8 (8-8) 7 (7-8) 6 (5-6.75) 3 (2-3.75) 2 (2-2) <0.001
Ventral 4.5 (4-5.75) 4 (4-6.5) 4.5 (4-5.75) 4 (4-4.75) 4 (3-5) 3.5 (3-4) 2 (2-3) 2 (2-3) <0.001
Total 12.5 (12-13.75) 12 (12-14.5) 12.5 (12-13.75) 12 (11.25-12.75) 11 (10.25-12) 9 (8-11) 5 (4.25-6) 4 (4-5) <0.001
Atelectasis (quadrants) 2 (2-2) 2 (2-3) 2 (2-2) 2 (2-2) 1 (1-2) 0 (0-1) 0 (0-0) 0 (0-0) <0.001

Figure 1: Main physiological variables according to PEEP level.

Figure 2: Comparison VD/VT and expiratory PL relationship according to the equation.

Total VD/VT and expiratory PL disclose a curve relationship with differents slopes. Airway VD/VT increases as expiratory PL increases. The relationship between alveolar VD/VT and expiratory PL appears to fit a curved shape function when Bohr method is used, whereas it is a straight line when using BE equation. Lines in figure 2 represent individual and pooled fixed effect (dotted blue line) predicted values from quadratic functions. Table 2 and 3 show summary results from mixed models for both VD/VT equations.

Table 2: Summary from the quadratic linear model of Bohr VD/VT and its components, as a function of expiratory PL.

\(\beta\) Marginal R2 Conditional R2
Total 0.53 0.93
Intercept 0.54 (0.50-0.59)
PL 0.0072 (0.0062-0.0083)
PL2 0.00024 (0.00016-0.00032)
Airway 0.54 0.94
Intercept 0.38 (0.32-0.43)
PL 0.0086 (0.0075-0.0097)
PL2 0.00020 (0.00012-0.00028)
Alveolar 0.26 0.73
Intercept 0.27 (0.24-0.30)
PL 0.0022 (0.0011-0.0033)
PL2 0.000168 (0.000084-0.000252)

Table 3: Summary from the quadratic linear model of BE VD/VT and its components, as a function of expiratory PL.

\(\beta\) Marginal R2 Conditional R2
Total 0.12 0.36
Intercept 0.81 (0.79-0.83)
PL -0.00203 (-0.00370–0.00035)
PL2 0.00013471 (-0.00000043- 0.00026985)
Airway 0.54 0.94
Intercept 0.38 (0.32-0.43)
PL 0.0086 (0.0075-0.0097)
PL2 0.00020 (0.00012-0.00028)
Alveolar 0.36 0.68
Intercept 0.69 (0.64-0.75)
PL -0.0081 (-0.0110–0.0053)
PL2 0.000037 (-0.000187- 0.000261)

Figure 3: Comparison VD/VT and inspiratory PL relationship according to the equation.

Table 4: Summary from the quadratic linear model of Bohr VD/VT and its components, as a function of inspiratory PL.

\(\beta\) Marginal R2 Conditional R2
Total 0.29 0.74
Intercept 0.45 (0.26-0.64)
PL 0.0037 (-0.0120- 0.0193)
PL2 0.000086 (-0.000225- 0.000397)
Airway 0.24 0.77
Intercept 0.242 (0.025-0.458)
PL 0.0067 (-0.0109- 0.0243)
PL2 0.00004 (-0.00031- 0.00039)
Alveolar 0.24 0.62
Intercept 0.25 (0.13-0.36)
PL -0.000076 (-0.009795- 0.009643)
PL2 0.000078 (-0.000115- 0.000271)

Table 5: Summary from the quadratic linear model of BE VD/VT and its components, as a function of inspiratory PL.

\(\beta\) Marginal R2 Conditional R2
Total 0.05 0.31
Intercept 0.75 (0.59-0.91)
PL 0.0043 (-0.0091- 0.0176)
PL2 -0.000054 (-0.000318- 0.000209)
Airway 0.16 0.59
Intercept 0.062 (-0.155- 0.279)
PL 0.0027 (-0.0150- 0.0205)
PL2 0.000042 (-0.000307- 0.000392)
Alveolar 0.04 0.36
Intercept 0.65 (0.30-1.01)
PL 0.0041 (-0.0251- 0.0332)
PL2 -0.00014 (-0.00072- 0.00043)

Figure 4: Comparison VD/VT and inspiratory PAW relationship according to the equation.

Table 6: Summary from the quadratic linear model of Bohr VD/VT and its components, as a function of inspiratory PAW.

\(\beta\) Marginal R2 Conditional R2
Total 0.33 0.9
Intercept -0.045 (-0.216- 0.125)
PAW 0.023 (0.016-0.031)
PAW2 -0.00018 (-0.00026–0.00010)
Airway 0.25 0.8
Intercept -0.256 (-0.535- 0.023)
PAW 0.025 (0.013-0.037)
PAW2 -0.000203 (-0.000335–0.000071)
Alveolar 0.44 0.7
Intercept -0.0029 (-0.1323- 0.1266)
PAW 0.0105 (0.0046-0.0163)
PAW2 -0.000075 (-0.000137–0.000012)

Table 7: Summary from the quadratic linear model of BE VD/VT and its components, as a function of inspiratory PAW.

\(\beta\) Marginal R2 Conditional R2
Total 0.02 0.17
Intercept 0.81 (0.62-0.99)
PAW -0.00015 (-0.00867- 0.00837)
PAW2 0.0000087 (-0.0000842- 0.0001017)
Airway 0.18 0.58
Intercept -0.2359 (-0.4696–0.0022)
PAW 0.0147 (0.0041-0.0253)
PAW2 -0.000128 (-0.000243–0.000012)
Alveolar 0.06 0.3
Intercept 0.99 (0.60-1.39)
PAW -0.0129 (-0.0309- 0.0052)
PAW2 0.000118 (-0.000079- 0.000314)

Figure 5: Comparison VD/VT and driving PAW relationship according to the equation.

Table 8: Summary from the quadratic linear model of Bohr VD/VT and its components, as a function of driving PAW.

\(\beta\) Marginal R2 Conditional R2
Total 0.12 0.38
Intercept 0.88 (0.67-1.09)
PAW -0.021 (-0.036–0.005)
PAW2 0.000318 (0.000037-0.000598)
Airway 0.2 0.38
Intercept 0.83 (0.58-1.08)
PAW -0.0283 (-0.0470–0.0097)
PAW2 0.000414 (0.000079-0.000750)
Alveolar 0.03 0.18
Intercept 0.36 (0.23-0.49)
PAW -0.0061 (-0.0158- 0.0037)
PAW2 0.000121 (-0.000055- 0.000297)

Table 9: Summary from the quadratic linear model of BE VD/VT and its components, as a function of driving PAW.

\(\beta\) Marginal R2 Conditional R2
Total 0.23 0.51
Intercept 0.64 (0.52-0.75)
PAW 0.0113 (0.0031-0.0196)
PAW2 -0.0001443 (-0.0002932- 0.0000046)
Airway 0.31 0.49
Intercept 0.49 (0.34-0.64)
PAW -0.024 (-0.036–0.013)
PAW2 0.00036 (0.00016-0.00057)
Alveolar 0.34 0.54
Intercept 0.147 (-0.074- 0.368)
PAW 0.036 (0.019-0.052)
PAW2 -0.0005 (-0.0008–0.0002)

Figure 6: Comparison VD/VT and alveolar minus arterial PO2 relationship according to the equation.

Table 10: Summary from the quadratic linear model of Bohr VD/VT and its components, as a function of alveolar minus arterial PO2.

\(\beta\) Marginal R2 Conditional R2
Total 0.41 0.79
Intercept 0.69 (0.64-0.73)
PA-aO2 -0.000352 (-0.000622–0.000082)
PA-aO22 0.00000011 (-0.00000031- 0.00000053)
Airway 0.32 0.69
Intercept 0.53 (0.47-0.59)
PA-aO2 -0.000485 (-0.000884–0.000085)
PA-aO22 0.00000028 (-0.00000034- 0.00000091)
Alveolar 0.42 0.58
Intercept 0.36 (0.33-0.38)
PA-aO2 -0.00033 (-0.00053–0.00013)
PA-aO22 0.000000283 (-0.000000033- 0.000000599)

Table 11: Summary from the quadratic linear model of BE VD/VT and its components, as a function of alveolar minus arterial PO2.

\(\beta\) Marginal R2 Conditional R2
Total 0.2 0.35
Intercept 0.85 (0.82-0.88)
PA-aO2 -0.00049 (-0.00073–0.00025)
PA-aO22 0.00000082 (0.00000044-0.00000119)
Airway 0.35 0.64
Intercept 0.18 (0.14-0.22)
PA-aO2 0.00013 (-0.00015- 0.00041)
PA-aO22 -0.000000521 (-0.000000960–0.000000082)
Alveolar 0.29 0.49
Intercept 0.67 (0.61-0.73)
PA-aO2 -0.00063 (-0.00111–0.00015)
PA-aO22 0.0000013 (0.0000006-0.0000021)

Figure 7: Comparison VD/VT and arterial PCO2 relationship according to the equation.

Table 12: Summary from the quadratic linear model of Bohr VD/VT and its components, as a function of arterial PCO2.

\(\beta\) Marginal R2 Conditional R2
Total 0.1 0.63
Intercept 0.86 (0.50-1.23)
PaCO2 -0.0064 (-0.0173- 0.0044)
PaCO22 0.00003 (-0.00005- 0.00011)
Airway 0.08 0.62
Intercept 0.55 (0.10-1.00)
PaCO2 -0.0015 (-0.0149- 0.0118)
PaCO22 -0.000011 (-0.000109- 0.000087)
Alveolar 0.11 0.24
Intercept 0.49 (0.29-0.70)
PaCO2 -0.00544 (-0.01182- 0.00093)
PaCO22 0.000034 (-0.000015- 0.000082)

Table 13: Summary from the quadratic linear model of BE VD/VT and its components, as a function of arterial PCO2.

\(\beta\) Marginal R2 Conditional R2
Total 0.31 0.62
Intercept 0.82 (0.60-1.03)
PaCO2 -0.0026 (-0.0088- 0.0037)
PaCO22 0.0000376 (-0.0000078- 0.0000829)
Airway 0.28 0.83
Intercept 0.294 (-0.003- 0.592)
PaCO2 -0.00033 (-0.00881- 0.00816)
PaCO22 -0.000031 (-0.000092- 0.000029)
Alveolar 0.35 0.85
Intercept 0.469 (0.052-0.887)
PaCO2 -0.001 (-0.013- 0.011)
PaCO22 0.000063 (-0.000022- 0.000148)