data

年齡抓在20至65,刪除自營者,學歷在五專至博士
對照組設定:
女、私立、遊憩運動學群、技術學院、宜花東離島、過量教育(符合工作要求)、客評關聯(無關聯)

#
#
dta <- read.csv("data0419.csv", header = T)
options(digits = 3)
pacman::p_load(tidyverse, ggplot2, MASS)
dta <- dta %>% mutate( Gender = relevel(Gender, ref = "女"),
                       Sector = relevel(Sector, ref = "私立"),
                       Field1 = relevel(Field1, ref = "遊憩與運動學群"),
                       EduLv = factor(EduLv, levels=c("博士","碩士","普通大學","科技大學",
                                                      "技術學院","五專","三專",
                                                      "二專","高中","高職","國中")),
                       EduLv = relevel(EduLv, ref = "技術學院"),
                       Region = factor(Region, levels =c("宜花東離島","北北基","桃竹苗",
                                                         "中彰投","雲嘉南","高屏澎")),
                       Age = as.numeric(Age), 
                       J_year = as.numeric(J_year), 
                       JobZone = as.numeric(JobZone),
                       EduZone = as.numeric(EduZone),
                       JobZone_D = as.numeric(EduZone-JobZone),
                       Salary = as.numeric(Salary),
                       SubEduOver = relevel(SubEduOver, ref="符合工作要求"),
                       Core = recode_factor(as.factor(JobCor), "1" = "無關聯",
                                            "2" = "部分關聯",
                                            "3" = "核心關聯"),
                       SubEduOver = factor(SubEduOver,levels =c("符合工作要求","高於工作要求","低於工作要求")))%>%  
  filter(Age <= 65 & Age >= 20 & Category != "自營者" )
# data construction
glimpse(dta)
## Observations: 1,518
## Variables: 25
## $ SID         <fctr> A10, A100, A103, A104, A105, A106, A107, A108, A1...
## $ Gender      <fctr> 女, 女, 男, 女, 女, 女, 女, 女, 男, 男, 男, 女, 男, 男, 女, 女, 女...
## $ Sector      <fctr> 國立(公立), 私立, 國立(公立), 國立(公立), 國立(公立), 私立, 私立, 國立(公立...
## $ EduLv       <fctr> 碩士, 普通大學, 高職, 普通大學, 普通大學, 普通大學, 普通大學, 普通大學, 碩士, 五...
## $ SubEduOver  <fctr> 高於工作要求, 符合工作要求, 符合工作要求, 符合工作要求, 符合工作要求, 符合工作要求, 符...
## $ Require     <fctr> 高中/高職, 普通大學, 高中/高職, 普通大學, 普通大學, 普通大學, 普通大學, 普通大學,...
## $ Field1      <fctr> 資訊學群, 外語學群, 工程學群, 文史哲學群, 文史哲學群, 大眾傳播學群, 大眾傳播學群, 藝...
## $ City        <fctr> 高雄市, 苗栗縣, 高雄市, 南投縣, 嘉義市, 臺北市, 臺北市, 南投縣, 臺中市, 桃園市,...
## $ Category    <fctr> 受雇於公營機關, 受雇於公營機關, 受雇者於私營企業, 受雇於公營機關, 受雇者於私營企業, 受雇...
## $ Staff       <fctr> 50-99人, 50-99人, 2-9人, 100-199人, 10-29人, 30-49人, 3...
## $ Hours       <int> 40, 70, 57, 51, 64, 50, 50, 47, 60, 45, 40, 56, 42...
## $ J_year      <dbl> 8, 4, 21, 1, 6, 0, 1, 1, 7, 3, 23, 1, 2, 1, 1, 14,...
## $ J_total     <dbl> 8, 4, 30, 1, 6, 0, 2, 2, 7, 30, 26, 1, 10, 1, 2, 1...
## $ income      <fctr> 2-3萬以下, 3-4萬以下, 3-4萬以下, 4-5萬以下, 2萬以下, 3-4萬以下, 3-4...
## $ SubMismatch <int> 2, 3, 5, 4, 5, 4, 3, 3, 4, 4, 4, 5, 5, 3, 2, 4, 1,...
## $ JobSat      <int> 4, 3, 5, 6, 7, 5, 3, 6, 5, 4, 7, 3, 4, 4, 4, 5, 5,...
## $ EduZone     <dbl> 5, 4, 2, 4, 4, 4, 4, 4, 5, 3, 5, 4, 4, 4, 4, 5, 4,...
## $ Region      <fctr> 高屏澎, 桃竹苗, 高屏澎, 中彰投, 雲嘉南, 北北基, 北北基, 中彰投, 中彰投, 桃竹苗,...
## $ Salary      <dbl> 25000, 35000, 35000, 45000, 20000, 35000, 35000, 4...
## $ Age         <dbl> 34, 30, 62, 25, 21, 24, 25, 26, 35, 54, 54, 23, 34...
## $ JobZone     <dbl> 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 3, 2, 4, 3,...
## $ JobCor      <int> 1, 2, 1, 2, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 2, 1,...
## $ Core        <fctr> 無關聯, 部分關聯, 無關聯, 部分關聯, 無關聯, 核心關聯, 無關聯, 無關聯, 核心關聯, ...
## $ ObjOver     <fctr> over, adequate, under, adequate, adequate, adequa...
## $ JobZone_D   <dbl> 2, 0, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 1, 2, 1, ...
# NA
apply(apply(dta, 1, is.na), 1, sum)
##         SID      Gender      Sector       EduLv  SubEduOver     Require 
##           0           0           0           0           0           0 
##      Field1        City    Category       Staff       Hours      J_year 
##           0           0           0           0           0           0 
##     J_total      income SubMismatch      JobSat     EduZone      Region 
##           0           0           0           0           0           0 
##      Salary         Age     JobZone      JobCor        Core     ObjOver 
##           0           0           0           0           0           0 
##   JobZone_D 
##           0
# check and pick out
lapply(dta[,c("Sector", "Field1", "City", "Region","EduLv", "SubEduOver", "ObjOver")], levels)
## $Sector
## [1] "私立"         "國外學校"     "國立(公立)"
## 
## $Field1
##  [1] "遊憩與運動學群" "大眾傳播學群"   "工程學群"       "文史哲學群"    
##  [5] "外語學群"       "生命科學學群"   "生物資源學群"   "地球與環境學群"
##  [9] "法政學群"       "社會與心理學群" "建築與設計學群" "財經學群"      
## [13] "教育學群"       "資訊學群"       "管理學群"       "數理化學群"    
## [17] "醫藥衛生學群"   "藝術學群"      
## 
## $City
##  [1] "宜蘭縣" "花蓮縣" "金門縣" "南投縣" "屏東縣" "苗栗縣" "桃園市"
##  [8] "高雄市" "基隆市" "雲林縣" "新北市" "新竹市" "新竹縣" "嘉義市"
## [15] "嘉義縣" "彰化縣" "臺中市" "臺北市" "臺東縣" "臺南市" "澎湖縣"
## 
## $Region
## [1] "宜花東離島" "北北基"     "桃竹苗"     "中彰投"     "雲嘉南"    
## [6] "高屏澎"    
## 
## $EduLv
##  [1] "技術學院" "博士"     "碩士"     "普通大學" "科技大學" "五專"    
##  [7] "三專"     "二專"     "高中"     "高職"     "國中"    
## 
## $SubEduOver
## [1] "符合工作要求" "高於工作要求" "低於工作要求"
## 
## $ObjOver
## [1] "adequate" "over"     "under"
names(dta)
##  [1] "SID"         "Gender"      "Sector"      "EduLv"       "SubEduOver" 
##  [6] "Require"     "Field1"      "City"        "Category"    "Staff"      
## [11] "Hours"       "J_year"      "J_total"     "income"      "SubMismatch"
## [16] "JobSat"      "EduZone"     "Region"      "Salary"      "Age"        
## [21] "JobZone"     "JobCor"      "Core"        "ObjOver"     "JobZone_D"
p <- dplyr::select(dta, -City, -income, -JobSat)
p <- p[p$EduLv %in% c("博士","碩士", "普通大學", "科技大學", "技術學院", "五專"),]

基礎模型設定

#
# Fit the full model 
full<- lm(Salary ~Gender+ Sector+ Field1+ Region+ EduLv+ SubEduOver +SubMismatch +ObjOver +Core + J_year+ Staff+ EduZone+ Hours, data = p)

# Fit the null model
null <- lm(Salary ~1, data= p)

Auto stepwise(參考用)

Forward

#
#以AIC為指標自動選取
# Forward
fm <- step(null, scope=list(lower=null, upper=full), direction="forward")
## Start:  AIC=29401
## Salary ~ 1
## 
##               Df Sum of Sq      RSS   AIC
## + EduLv        5  1.17e+11 7.62e+11 29204
## + EduZone      1  9.24e+10 7.86e+11 29241
## + J_year       1  6.07e+10 8.18e+11 29299
## + Field1      17  7.39e+10 8.04e+11 29307
## + Gender       1  5.42e+10 8.24e+11 29310
## + Staff        8  5.02e+10 8.28e+11 29331
## + Sector       2  3.66e+10 8.42e+11 29343
## + SubMismatch  1  2.59e+10 8.52e+11 29359
## + SubEduOver   2  2.55e+10 8.53e+11 29362
## + Region       5  2.72e+10 8.51e+11 29365
## + Core         2  1.23e+10 8.66e+11 29384
## + Hours        1  1.11e+10 8.67e+11 29384
## <none>                     8.78e+11 29401
## + ObjOver      2  1.67e+09 8.77e+11 29402
## 
## Step:  AIC=29204
## Salary ~ EduLv
## 
##               Df Sum of Sq      RSS   AIC
## + J_year       1  4.77e+10 7.14e+11 29111
## + Gender       1  4.31e+10 7.19e+11 29121
## + Field1      17  5.82e+10 7.03e+11 29122
## + SubEduOver   2  2.99e+10 7.32e+11 29149
## + Staff        8  3.00e+10 7.32e+11 29161
## + ObjOver      2  1.28e+10 7.49e+11 29183
## + SubMismatch  1  1.06e+10 7.51e+11 29185
## + Region       5  1.40e+10 7.48e+11 29187
## + Core         2  7.72e+09 7.54e+11 29193
## + Hours        1  6.43e+09 7.55e+11 29193
## + Sector       2  4.28e+09 7.57e+11 29199
## <none>                     7.62e+11 29204
## 
## Step:  AIC=29111
## Salary ~ EduLv + J_year
## 
##               Df Sum of Sq      RSS   AIC
## + Field1      17  6.10e+10 6.53e+11 29015
## + Gender       1  4.16e+10 6.72e+11 29026
## + SubEduOver   2  2.34e+10 6.91e+11 29067
## + Staff        8  2.73e+10 6.87e+11 29071
## + Region       5  1.80e+10 6.96e+11 29084
## + ObjOver      2  1.09e+10 7.03e+11 29093
## + SubMismatch  1  9.75e+09 7.04e+11 29093
## + Core         2  1.00e+10 7.04e+11 29095
## + Hours        1  8.60e+09 7.05e+11 29096
## + Sector       2  3.68e+09 7.10e+11 29108
## <none>                     7.14e+11 29111
## 
## Step:  AIC=29015
## Salary ~ EduLv + J_year + Field1
## 
##               Df Sum of Sq      RSS   AIC
## + SubEduOver   2  2.44e+10 6.29e+11 28964
## + Gender       1  1.53e+10 6.38e+11 28983
## + ObjOver      2  1.51e+10 6.38e+11 28985
## + Region       5  1.37e+10 6.39e+11 28995
## + Staff        8  1.63e+10 6.37e+11 28995
## + SubMismatch  1  8.62e+09 6.44e+11 28998
## + Core         2  9.21e+09 6.44e+11 28999
## + Hours        1  4.86e+09 6.48e+11 29007
## + Sector       2  4.64e+09 6.48e+11 29009
## <none>                     6.53e+11 29015
## 
## Step:  AIC=28964
## Salary ~ EduLv + J_year + Field1 + SubEduOver
## 
##               Df Sum of Sq      RSS   AIC
## + Gender       1  1.75e+10 6.11e+11 28925
## + ObjOver      2  1.11e+10 6.17e+11 28942
## + Region       5  1.24e+10 6.16e+11 28945
## + Staff        8  1.45e+10 6.14e+11 28946
## + Hours        1  6.02e+09 6.22e+11 28952
## + Sector       2  5.51e+09 6.23e+11 28955
## + Core         2  5.51e+09 6.23e+11 28955
## + SubMismatch  1  1.90e+09 6.27e+11 28962
## <none>                     6.29e+11 28964
## 
## Step:  AIC=28925
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender
## 
##               Df Sum of Sq      RSS   AIC
## + Region       5  1.27e+10 5.98e+11 28905
## + ObjOver      2  9.80e+09 6.01e+11 28906
## + Staff        8  1.22e+10 5.99e+11 28912
## + Hours        1  5.98e+09 6.05e+11 28913
## + Core         2  5.74e+09 6.05e+11 28915
## + Sector       2  4.85e+09 6.06e+11 28918
## + SubMismatch  1  2.72e+09 6.08e+11 28921
## <none>                     6.11e+11 28925
## 
## Step:  AIC=28905
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender + Region
## 
##               Df Sum of Sq      RSS   AIC
## + ObjOver      2  1.06e+10 5.88e+11 28883
## + Hours        1  5.51e+09 5.93e+11 28893
## + Core         2  5.77e+09 5.93e+11 28894
## + Staff        8  9.70e+09 5.89e+11 28897
## + Sector       2  4.16e+09 5.94e+11 28898
## + SubMismatch  1  2.60e+09 5.96e+11 28900
## <none>                     5.98e+11 28905
## 
## Step:  AIC=28883
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender + Region + 
##     ObjOver
## 
##               Df Sum of Sq      RSS   AIC
## + Hours        1  5.12e+09 5.83e+11 28872
## + Staff        8  9.91e+09 5.78e+11 28874
## + Sector       2  3.68e+09 5.84e+11 28877
## + Core         2  2.96e+09 5.85e+11 28879
## + SubMismatch  1  1.14e+09 5.87e+11 28882
## <none>                     5.88e+11 28883
## 
## Step:  AIC=28872
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender + Region + 
##     ObjOver + Hours
## 
##               Df Sum of Sq      RSS   AIC
## + Staff        8  1.00e+10 5.73e+11 28863
## + Sector       2  3.55e+09 5.79e+11 28867
## + Core         2  2.90e+09 5.80e+11 28869
## + SubMismatch  1  1.20e+09 5.81e+11 28871
## <none>                     5.83e+11 28872
## 
## Step:  AIC=28863
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender + Region + 
##     ObjOver + Hours + Staff
## 
##               Df Sum of Sq      RSS   AIC
## + Sector       2  3.40e+09 5.69e+11 28858
## + Core         2  2.52e+09 5.70e+11 28860
## + SubMismatch  1  1.15e+09 5.71e+11 28862
## <none>                     5.73e+11 28863
## 
## Step:  AIC=28858
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender + Region + 
##     ObjOver + Hours + Staff + Sector
## 
##               Df Sum of Sq      RSS   AIC
## + Core         2  2.61e+09 5.67e+11 28855
## + SubMismatch  1  1.21e+09 5.68e+11 28857
## <none>                     5.69e+11 28858
## 
## Step:  AIC=28855
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender + Region + 
##     ObjOver + Hours + Staff + Sector + Core
## 
##               Df Sum of Sq      RSS   AIC
## <none>                     5.67e+11 28855
## + SubMismatch  1  5.52e+08 5.66e+11 28856
summary(fm)
## 
## Call:
## lm(formula = Salary ~ EduLv + J_year + Field1 + SubEduOver + 
##     Gender + Region + ObjOver + Hours + Staff + Sector + Core, 
##     data = p)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -45438 -10553  -2060   6092 235151 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             12250.2    13234.6    0.93  0.35480    
## EduLv博士               12794.5     7645.8    1.67  0.09447 .  
## EduLv碩士               18045.9     3517.4    5.13  3.3e-07 ***
## EduLv普通大學            4026.7     3402.0    1.18  0.23677    
## EduLv科技大學           -2440.7     3487.9   -0.70  0.48419    
## EduLv五專                1902.0     5114.5    0.37  0.71004    
## J_year                   1158.2      112.3   10.32  < 2e-16 ***
## Field1大眾傳播學群      -3055.3     4825.1   -0.63  0.52670    
## Field1工程學群           9511.1     3948.7    2.41  0.01614 *  
## Field1文史哲學群        -4791.0     4333.8   -1.11  0.26914    
## Field1外語學群           1889.2     4319.9    0.44  0.66194    
## Field1生命科學學群       1424.5     5040.5    0.28  0.77752    
## Field1生物資源學群      -1368.0     5588.2   -0.24  0.80665    
## Field1地球與環境學群    -4047.8     5607.4   -0.72  0.47050    
## Field1法政學群           1281.0     4523.8    0.28  0.77709    
## Field1社會與心理學群    -4373.4     4128.5   -1.06  0.28963    
## Field1建築與設計學群     3920.7     4651.7    0.84  0.39945    
## Field1財經學群           1802.4     4138.5    0.44  0.66325    
## Field1教育學群          -2696.9     4241.8   -0.64  0.52502    
## Field1資訊學群           3484.2     4142.8    0.84  0.40047    
## Field1管理學群          -2136.0     4031.2   -0.53  0.59629    
## Field1數理化學群          407.2     4540.5    0.09  0.92855    
## Field1醫藥衛生學群       8033.9     4228.0    1.90  0.05762 .  
## Field1藝術學群          -5437.0     5080.0   -1.07  0.28468    
## SubEduOver高於工作要求  -8559.3     1381.1   -6.20  7.5e-10 ***
## SubEduOver低於工作要求  -7597.6     1834.9   -4.14  3.7e-05 ***
## Gender男                 7470.0     1266.7    5.90  4.6e-09 ***
## Region北北基             2501.5     3015.1    0.83  0.40686    
## Region桃竹苗             6603.0     3222.4    2.05  0.04064 *  
## Region中彰投             1165.1     3177.8    0.37  0.71394    
## Region雲嘉南            -2108.0     3138.2   -0.67  0.50188    
## Region高屏澎            -1071.5     3132.9   -0.34  0.73238    
## ObjOverover             -4222.3     1351.6   -3.12  0.00182 ** 
## ObjOverunder             5519.0     2773.7    1.99  0.04681 *  
## Hours                     200.6       57.1    3.51  0.00046 ***
## Staff10-29人             7349.9    11790.1    0.62  0.53312    
## Staff100-199人           9576.9    11756.1    0.81  0.41542    
## Staff1人                -4042.2    13768.7   -0.29  0.76912    
## Staff2-9人               3032.0    11857.1    0.26  0.79821    
## Staff200-499             6511.6    11779.7    0.55  0.58050    
## Staff30-49人             8535.2    11851.6    0.72  0.47154    
## Staff50-99人             8748.5    11782.4    0.74  0.45790    
## Staff500人以上          11397.9    11717.3    0.97  0.33085    
## Sector國外學校          11295.0     4315.3    2.62  0.00895 ** 
## Sector國立(公立)       2481.4     1299.7    1.91  0.05644 .  
## Core部分關聯             3648.9     1677.2    2.18  0.02975 *  
## Core核心關聯             2505.0     1384.3    1.81  0.07058 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20100 on 1407 degrees of freedom
## Multiple R-squared:  0.355,  Adjusted R-squared:  0.334 
## F-statistic: 16.8 on 46 and 1407 DF,  p-value: <2e-16
formula(fm)
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender + Region + 
##     ObjOver + Hours + Staff + Sector + Core

Backward

# Backward
bm <- step(full, p, direction="backward")
## Start:  AIC=28856
## Salary ~ Gender + Sector + Field1 + Region + EduLv + SubEduOver + 
##     SubMismatch + ObjOver + Core + J_year + Staff + EduZone + 
##     Hours
## 
## 
## Step:  AIC=28856
## Salary ~ Gender + Sector + Field1 + Region + EduLv + SubEduOver + 
##     SubMismatch + ObjOver + Core + J_year + Staff + Hours
## 
##               Df Sum of Sq      RSS   AIC
## - SubMismatch  1  5.52e+08 5.67e+11 28855
## <none>                     5.66e+11 28856
## - Core         2  1.95e+09 5.68e+11 28857
## - Sector       2  3.52e+09 5.70e+11 28861
## - Staff        8  9.46e+09 5.76e+11 28864
## - Hours        1  5.02e+09 5.71e+11 28867
## - ObjOver      2  6.73e+09 5.73e+11 28869
## - Region       5  9.91e+09 5.76e+11 28871
## - Field1      17  2.51e+10 5.91e+11 28885
## - Gender       1  1.43e+10 5.80e+11 28890
## - SubEduOver   2  1.60e+10 5.82e+11 28892
## - J_year       1  4.28e+10 6.09e+11 28960
## - EduLv        5  5.25e+10 6.18e+11 28975
## 
## Step:  AIC=28855
## Salary ~ Gender + Sector + Field1 + Region + EduLv + SubEduOver + 
##     ObjOver + Core + J_year + Staff + Hours
## 
##              Df Sum of Sq      RSS   AIC
## <none>                    5.67e+11 28855
## - Core        2  2.61e+09 5.69e+11 28858
## - Sector      2  3.49e+09 5.70e+11 28860
## - Staff       8  9.45e+09 5.76e+11 28863
## - Hours       1  4.97e+09 5.72e+11 28866
## - ObjOver     2  7.23e+09 5.74e+11 28870
## - Region      5  1.00e+10 5.77e+11 28871
## - Field1     17  2.56e+10 5.92e+11 28886
## - Gender      1  1.40e+10 5.81e+11 28889
## - SubEduOver  2  1.93e+10 5.86e+11 28900
## - J_year      1  4.29e+10 6.09e+11 28959
## - EduLv       5  5.61e+10 6.23e+11 28983
summary(bm)
## 
## Call:
## lm(formula = Salary ~ Gender + Sector + Field1 + Region + EduLv + 
##     SubEduOver + ObjOver + Core + J_year + Staff + Hours, data = p)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -45438 -10553  -2060   6092 235151 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             12250.2    13234.6    0.93  0.35480    
## Gender男                 7470.0     1266.7    5.90  4.6e-09 ***
## Sector國外學校          11295.0     4315.3    2.62  0.00895 ** 
## Sector國立(公立)       2481.4     1299.7    1.91  0.05644 .  
## Field1大眾傳播學群      -3055.3     4825.1   -0.63  0.52670    
## Field1工程學群           9511.1     3948.7    2.41  0.01614 *  
## Field1文史哲學群        -4791.0     4333.8   -1.11  0.26914    
## Field1外語學群           1889.2     4319.9    0.44  0.66194    
## Field1生命科學學群       1424.5     5040.5    0.28  0.77752    
## Field1生物資源學群      -1368.0     5588.2   -0.24  0.80665    
## Field1地球與環境學群    -4047.8     5607.4   -0.72  0.47050    
## Field1法政學群           1281.0     4523.8    0.28  0.77709    
## Field1社會與心理學群    -4373.4     4128.5   -1.06  0.28963    
## Field1建築與設計學群     3920.7     4651.7    0.84  0.39945    
## Field1財經學群           1802.4     4138.5    0.44  0.66325    
## Field1教育學群          -2696.9     4241.8   -0.64  0.52502    
## Field1資訊學群           3484.2     4142.8    0.84  0.40047    
## Field1管理學群          -2136.0     4031.2   -0.53  0.59629    
## Field1數理化學群          407.2     4540.5    0.09  0.92855    
## Field1醫藥衛生學群       8033.9     4228.0    1.90  0.05762 .  
## Field1藝術學群          -5437.0     5080.0   -1.07  0.28468    
## Region北北基             2501.5     3015.1    0.83  0.40686    
## Region桃竹苗             6603.0     3222.4    2.05  0.04064 *  
## Region中彰投             1165.1     3177.8    0.37  0.71394    
## Region雲嘉南            -2108.0     3138.2   -0.67  0.50188    
## Region高屏澎            -1071.5     3132.9   -0.34  0.73238    
## EduLv博士               12794.5     7645.8    1.67  0.09447 .  
## EduLv碩士               18045.9     3517.4    5.13  3.3e-07 ***
## EduLv普通大學            4026.7     3402.0    1.18  0.23677    
## EduLv科技大學           -2440.7     3487.9   -0.70  0.48419    
## EduLv五專                1902.0     5114.5    0.37  0.71004    
## SubEduOver高於工作要求  -8559.3     1381.1   -6.20  7.5e-10 ***
## SubEduOver低於工作要求  -7597.6     1834.9   -4.14  3.7e-05 ***
## ObjOverover             -4222.3     1351.6   -3.12  0.00182 ** 
## ObjOverunder             5519.0     2773.7    1.99  0.04681 *  
## Core部分關聯             3648.9     1677.2    2.18  0.02975 *  
## Core核心關聯             2505.0     1384.3    1.81  0.07058 .  
## J_year                   1158.2      112.3   10.32  < 2e-16 ***
## Staff10-29人             7349.9    11790.1    0.62  0.53312    
## Staff100-199人           9576.9    11756.1    0.81  0.41542    
## Staff1人                -4042.2    13768.7   -0.29  0.76912    
## Staff2-9人               3032.0    11857.1    0.26  0.79821    
## Staff200-499             6511.6    11779.7    0.55  0.58050    
## Staff30-49人             8535.2    11851.6    0.72  0.47154    
## Staff50-99人             8748.5    11782.4    0.74  0.45790    
## Staff500人以上          11397.9    11717.3    0.97  0.33085    
## Hours                     200.6       57.1    3.51  0.00046 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20100 on 1407 degrees of freedom
## Multiple R-squared:  0.355,  Adjusted R-squared:  0.334 
## F-statistic: 16.8 on 46 and 1407 DF,  p-value: <2e-16
formula(bm)
## Salary ~ Gender + Sector + Field1 + Region + EduLv + SubEduOver + 
##     ObjOver + Core + J_year + Staff + Hours

Auto

# Auto
bbm <- step(null, scope = list(upper=full), data=p, direction="both")
## Start:  AIC=29401
## Salary ~ 1
## 
##               Df Sum of Sq      RSS   AIC
## + EduLv        5  1.17e+11 7.62e+11 29204
## + EduZone      1  9.24e+10 7.86e+11 29241
## + J_year       1  6.07e+10 8.18e+11 29299
## + Field1      17  7.39e+10 8.04e+11 29307
## + Gender       1  5.42e+10 8.24e+11 29310
## + Staff        8  5.02e+10 8.28e+11 29331
## + Sector       2  3.66e+10 8.42e+11 29343
## + SubMismatch  1  2.59e+10 8.52e+11 29359
## + SubEduOver   2  2.55e+10 8.53e+11 29362
## + Region       5  2.72e+10 8.51e+11 29365
## + Core         2  1.23e+10 8.66e+11 29384
## + Hours        1  1.11e+10 8.67e+11 29384
## <none>                     8.78e+11 29401
## + ObjOver      2  1.67e+09 8.77e+11 29402
## 
## Step:  AIC=29204
## Salary ~ EduLv
## 
##               Df Sum of Sq      RSS   AIC
## + J_year       1  4.77e+10 7.14e+11 29111
## + Gender       1  4.31e+10 7.19e+11 29121
## + Field1      17  5.82e+10 7.03e+11 29122
## + SubEduOver   2  2.99e+10 7.32e+11 29149
## + Staff        8  3.00e+10 7.32e+11 29161
## + ObjOver      2  1.28e+10 7.49e+11 29183
## + SubMismatch  1  1.06e+10 7.51e+11 29185
## + Region       5  1.40e+10 7.48e+11 29187
## + Core         2  7.72e+09 7.54e+11 29193
## + Hours        1  6.43e+09 7.55e+11 29193
## + Sector       2  4.28e+09 7.57e+11 29199
## <none>                     7.62e+11 29204
## - EduLv        5  1.17e+11 8.78e+11 29401
## 
## Step:  AIC=29111
## Salary ~ EduLv + J_year
## 
##               Df Sum of Sq      RSS   AIC
## + Field1      17  6.10e+10 6.53e+11 29015
## + Gender       1  4.16e+10 6.72e+11 29026
## + SubEduOver   2  2.34e+10 6.91e+11 29067
## + Staff        8  2.73e+10 6.87e+11 29071
## + Region       5  1.80e+10 6.96e+11 29084
## + ObjOver      2  1.09e+10 7.03e+11 29093
## + SubMismatch  1  9.75e+09 7.04e+11 29093
## + Core         2  1.00e+10 7.04e+11 29095
## + Hours        1  8.60e+09 7.05e+11 29096
## + Sector       2  3.68e+09 7.10e+11 29108
## <none>                     7.14e+11 29111
## - J_year       1  4.77e+10 7.62e+11 29204
## - EduLv        5  1.04e+11 8.18e+11 29299
## 
## Step:  AIC=29015
## Salary ~ EduLv + J_year + Field1
## 
##               Df Sum of Sq      RSS   AIC
## + SubEduOver   2  2.44e+10 6.29e+11 28964
## + Gender       1  1.53e+10 6.38e+11 28983
## + ObjOver      2  1.51e+10 6.38e+11 28985
## + Region       5  1.37e+10 6.39e+11 28995
## + Staff        8  1.63e+10 6.37e+11 28995
## + SubMismatch  1  8.62e+09 6.44e+11 28998
## + Core         2  9.21e+09 6.44e+11 28999
## + Hours        1  4.86e+09 6.48e+11 29007
## + Sector       2  4.64e+09 6.48e+11 29009
## <none>                     6.53e+11 29015
## - Field1      17  6.10e+10 7.14e+11 29111
## - J_year       1  5.06e+10 7.03e+11 29122
## - EduLv        5  9.27e+10 7.46e+11 29198
## 
## Step:  AIC=28964
## Salary ~ EduLv + J_year + Field1 + SubEduOver
## 
##               Df Sum of Sq      RSS   AIC
## + Gender       1  1.75e+10 6.11e+11 28925
## + ObjOver      2  1.11e+10 6.17e+11 28942
## + Region       5  1.24e+10 6.16e+11 28945
## + Staff        8  1.45e+10 6.14e+11 28946
## + Hours        1  6.02e+09 6.22e+11 28952
## + Sector       2  5.51e+09 6.23e+11 28955
## + Core         2  5.51e+09 6.23e+11 28955
## + SubMismatch  1  1.90e+09 6.27e+11 28962
## <none>                     6.29e+11 28964
## - SubEduOver   2  2.44e+10 6.53e+11 29015
## - J_year       1  4.38e+10 6.72e+11 29060
## - Field1      17  6.20e+10 6.91e+11 29067
## - EduLv        5  9.29e+10 7.21e+11 29155
## 
## Step:  AIC=28925
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender
## 
##               Df Sum of Sq      RSS   AIC
## + Region       5  1.27e+10 5.98e+11 28905
## + ObjOver      2  9.80e+09 6.01e+11 28906
## + Staff        8  1.22e+10 5.99e+11 28912
## + Hours        1  5.98e+09 6.05e+11 28913
## + Core         2  5.74e+09 6.05e+11 28915
## + Sector       2  4.85e+09 6.06e+11 28918
## + SubMismatch  1  2.72e+09 6.08e+11 28921
## <none>                     6.11e+11 28925
## - Gender       1  1.75e+10 6.29e+11 28964
## - Field1      17  3.35e+10 6.45e+11 28969
## - SubEduOver   2  2.66e+10 6.38e+11 28983
## - J_year       1  4.07e+10 6.52e+11 29017
## - EduLv        5  9.17e+10 7.03e+11 29118
## 
## Step:  AIC=28905
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender + Region
## 
##               Df Sum of Sq      RSS   AIC
## + ObjOver      2  1.06e+10 5.88e+11 28883
## + Hours        1  5.51e+09 5.93e+11 28893
## + Core         2  5.77e+09 5.93e+11 28894
## + Staff        8  9.70e+09 5.89e+11 28897
## + Sector       2  4.16e+09 5.94e+11 28898
## + SubMismatch  1  2.60e+09 5.96e+11 28900
## <none>                     5.98e+11 28905
## - Region       5  1.27e+10 6.11e+11 28925
## - Gender       1  1.78e+10 6.16e+11 28945
## - Field1      17  3.19e+10 6.30e+11 28946
## - SubEduOver   2  2.51e+10 6.23e+11 28960
## - J_year       1  4.41e+10 6.42e+11 29006
## - EduLv        5  8.25e+10 6.81e+11 29082
## 
## Step:  AIC=28883
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender + Region + 
##     ObjOver
## 
##               Df Sum of Sq      RSS   AIC
## + Hours        1  5.12e+09 5.83e+11 28872
## + Staff        8  9.91e+09 5.78e+11 28874
## + Sector       2  3.68e+09 5.84e+11 28877
## + Core         2  2.96e+09 5.85e+11 28879
## + SubMismatch  1  1.14e+09 5.87e+11 28882
## <none>                     5.88e+11 28883
## - ObjOver      2  1.06e+10 5.98e+11 28905
## - Region       5  1.35e+10 6.01e+11 28906
## - Gender       1  1.64e+10 6.04e+11 28921
## - SubEduOver   2  2.10e+10 6.09e+11 28930
## - Field1      17  3.43e+10 6.22e+11 28931
## - J_year       1  4.33e+10 6.31e+11 28984
## - EduLv        5  9.18e+10 6.80e+11 29084
## 
## Step:  AIC=28872
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender + Region + 
##     ObjOver + Hours
## 
##               Df Sum of Sq      RSS   AIC
## + Staff        8  1.00e+10 5.73e+11 28863
## + Sector       2  3.55e+09 5.79e+11 28867
## + Core         2  2.90e+09 5.80e+11 28869
## + SubMismatch  1  1.20e+09 5.81e+11 28871
## <none>                     5.83e+11 28872
## - Hours        1  5.12e+09 5.88e+11 28883
## - ObjOver      2  1.02e+10 5.93e+11 28893
## - Region       5  1.30e+10 5.96e+11 28894
## - Gender       1  1.64e+10 5.99e+11 28910
## - Field1      17  3.13e+10 6.14e+11 28914
## - SubEduOver   2  2.21e+10 6.05e+11 28922
## - J_year       1  4.45e+10 6.27e+11 28977
## - EduLv        5  8.84e+10 6.71e+11 29067
## 
## Step:  AIC=28863
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender + Region + 
##     ObjOver + Hours + Staff
## 
##               Df Sum of Sq      RSS   AIC
## + Sector       2  3.40e+09 5.69e+11 28858
## + Core         2  2.52e+09 5.70e+11 28860
## + SubMismatch  1  1.15e+09 5.71e+11 28862
## <none>                     5.73e+11 28863
## - Staff        8  1.00e+10 5.83e+11 28872
## - Hours        1  5.22e+09 5.78e+11 28874
## - Region       5  1.06e+10 5.83e+11 28879
## - ObjOver      2  1.05e+10 5.83e+11 28885
## - Field1      17  2.62e+10 5.99e+11 28894
## - Gender       1  1.43e+10 5.87e+11 28897
## - SubEduOver   2  2.06e+10 5.93e+11 28910
## - J_year       1  4.25e+10 6.15e+11 28965
## - EduLv        5  8.04e+10 6.53e+11 29044
## 
## Step:  AIC=28858
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender + Region + 
##     ObjOver + Hours + Staff + Sector
## 
##               Df Sum of Sq      RSS   AIC
## + Core         2  2.61e+09 5.67e+11 28855
## + SubMismatch  1  1.21e+09 5.68e+11 28857
## <none>                     5.69e+11 28858
## - Sector       2  3.40e+09 5.73e+11 28863
## - Staff        8  9.86e+09 5.79e+11 28867
## - Hours        1  5.05e+09 5.74e+11 28869
## - Region       5  1.00e+10 5.79e+11 28873
## - ObjOver      2  9.98e+09 5.79e+11 28879
## - Field1      17  2.62e+10 5.95e+11 28890
## - Gender       1  1.38e+10 5.83e+11 28891
## - SubEduOver   2  2.15e+10 5.91e+11 28908
## - J_year       1  4.15e+10 6.11e+11 28958
## - EduLv        5  6.10e+10 6.30e+11 28996
## 
## Step:  AIC=28855
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender + Region + 
##     ObjOver + Hours + Staff + Sector + Core
## 
##               Df Sum of Sq      RSS   AIC
## <none>                     5.67e+11 28855
## + SubMismatch  1  5.52e+08 5.66e+11 28856
## - Core         2  2.61e+09 5.69e+11 28858
## - Sector       2  3.49e+09 5.70e+11 28860
## - Staff        8  9.45e+09 5.76e+11 28863
## - Hours        1  4.97e+09 5.72e+11 28866
## - ObjOver      2  7.23e+09 5.74e+11 28870
## - Region       5  1.00e+10 5.77e+11 28871
## - Field1      17  2.56e+10 5.92e+11 28886
## - Gender       1  1.40e+10 5.81e+11 28889
## - SubEduOver   2  1.93e+10 5.86e+11 28900
## - J_year       1  4.29e+10 6.09e+11 28959
## - EduLv        5  5.61e+10 6.23e+11 28983
summary(bbm)
## 
## Call:
## lm(formula = Salary ~ EduLv + J_year + Field1 + SubEduOver + 
##     Gender + Region + ObjOver + Hours + Staff + Sector + Core, 
##     data = p)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -45438 -10553  -2060   6092 235151 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             12250.2    13234.6    0.93  0.35480    
## EduLv博士               12794.5     7645.8    1.67  0.09447 .  
## EduLv碩士               18045.9     3517.4    5.13  3.3e-07 ***
## EduLv普通大學            4026.7     3402.0    1.18  0.23677    
## EduLv科技大學           -2440.7     3487.9   -0.70  0.48419    
## EduLv五專                1902.0     5114.5    0.37  0.71004    
## J_year                   1158.2      112.3   10.32  < 2e-16 ***
## Field1大眾傳播學群      -3055.3     4825.1   -0.63  0.52670    
## Field1工程學群           9511.1     3948.7    2.41  0.01614 *  
## Field1文史哲學群        -4791.0     4333.8   -1.11  0.26914    
## Field1外語學群           1889.2     4319.9    0.44  0.66194    
## Field1生命科學學群       1424.5     5040.5    0.28  0.77752    
## Field1生物資源學群      -1368.0     5588.2   -0.24  0.80665    
## Field1地球與環境學群    -4047.8     5607.4   -0.72  0.47050    
## Field1法政學群           1281.0     4523.8    0.28  0.77709    
## Field1社會與心理學群    -4373.4     4128.5   -1.06  0.28963    
## Field1建築與設計學群     3920.7     4651.7    0.84  0.39945    
## Field1財經學群           1802.4     4138.5    0.44  0.66325    
## Field1教育學群          -2696.9     4241.8   -0.64  0.52502    
## Field1資訊學群           3484.2     4142.8    0.84  0.40047    
## Field1管理學群          -2136.0     4031.2   -0.53  0.59629    
## Field1數理化學群          407.2     4540.5    0.09  0.92855    
## Field1醫藥衛生學群       8033.9     4228.0    1.90  0.05762 .  
## Field1藝術學群          -5437.0     5080.0   -1.07  0.28468    
## SubEduOver高於工作要求  -8559.3     1381.1   -6.20  7.5e-10 ***
## SubEduOver低於工作要求  -7597.6     1834.9   -4.14  3.7e-05 ***
## Gender男                 7470.0     1266.7    5.90  4.6e-09 ***
## Region北北基             2501.5     3015.1    0.83  0.40686    
## Region桃竹苗             6603.0     3222.4    2.05  0.04064 *  
## Region中彰投             1165.1     3177.8    0.37  0.71394    
## Region雲嘉南            -2108.0     3138.2   -0.67  0.50188    
## Region高屏澎            -1071.5     3132.9   -0.34  0.73238    
## ObjOverover             -4222.3     1351.6   -3.12  0.00182 ** 
## ObjOverunder             5519.0     2773.7    1.99  0.04681 *  
## Hours                     200.6       57.1    3.51  0.00046 ***
## Staff10-29人             7349.9    11790.1    0.62  0.53312    
## Staff100-199人           9576.9    11756.1    0.81  0.41542    
## Staff1人                -4042.2    13768.7   -0.29  0.76912    
## Staff2-9人               3032.0    11857.1    0.26  0.79821    
## Staff200-499             6511.6    11779.7    0.55  0.58050    
## Staff30-49人             8535.2    11851.6    0.72  0.47154    
## Staff50-99人             8748.5    11782.4    0.74  0.45790    
## Staff500人以上          11397.9    11717.3    0.97  0.33085    
## Sector國外學校          11295.0     4315.3    2.62  0.00895 ** 
## Sector國立(公立)       2481.4     1299.7    1.91  0.05644 .  
## Core部分關聯             3648.9     1677.2    2.18  0.02975 *  
## Core核心關聯             2505.0     1384.3    1.81  0.07058 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20100 on 1407 degrees of freedom
## Multiple R-squared:  0.355,  Adjusted R-squared:  0.334 
## F-statistic: 16.8 on 46 and 1407 DF,  p-value: <2e-16
formula(bbm)
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender + Region + 
##     ObjOver + Hours + Staff + Sector + Core

三個模型比較

# 三個模型 向前選取>向後選取>電腦選取
lapply(c("fm","bm","bbm"),formula)
## [[1]]
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender + Region + 
##     ObjOver + Hours + Staff + Sector + Core
## <environment: 0x000000002394e908>
## 
## [[2]]
## Salary ~ Gender + Sector + Field1 + Region + EduLv + SubEduOver + 
##     ObjOver + Core + J_year + Staff + Hours
## <environment: 0x000000002394e908>
## 
## [[3]]
## Salary ~ EduLv + J_year + Field1 + SubEduOver + Gender + Region + 
##     ObjOver + Hours + Staff + Sector + Core
## <environment: 0x000000002394e908>

stepwise regression

test

#
#Manual F-test-base forward selection
# 
add1(null,scope = ~ Gender+ Sector+ Field1+ Region+ EduLv+ SubEduOver +SubMismatch +ObjOver +Core + J_year+ Staff+ EduZone+ Hours,test = "F" )
## Single term additions
## 
## Model:
## Salary ~ 1
##             Df Sum of Sq      RSS   AIC F value  Pr(>F)    
## <none>                   8.78e+11 29401                    
## Gender       1  5.42e+10 8.24e+11 29310   95.50 < 2e-16 ***
## Sector       2  3.66e+10 8.42e+11 29343   31.52 4.0e-14 ***
## Field1      17  7.39e+10 8.04e+11 29307    7.76 < 2e-16 ***
## Region       5  2.72e+10 8.51e+11 29365    9.24 1.1e-08 ***
## EduLv        5  1.17e+11 7.62e+11 29204   44.34 < 2e-16 ***
## SubEduOver   2  2.55e+10 8.53e+11 29362   21.70 5.2e-10 ***
## SubMismatch  1  2.59e+10 8.52e+11 29359   44.05 4.5e-11 ***
## ObjOver      2  1.67e+09 8.77e+11 29402    1.39    0.25    
## Core         2  1.23e+10 8.66e+11 29384   10.33 3.5e-05 ***
## J_year       1  6.07e+10 8.18e+11 29299  107.76 < 2e-16 ***
## Staff        8  5.02e+10 8.28e+11 29331   10.95 4.4e-15 ***
## EduZone      1  9.24e+10 7.86e+11 29241  170.63 < 2e-16 ***
## Hours        1  1.11e+10 8.67e+11 29384   18.55 1.8e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
add1(update(null,~.+Gender),
     scope = ~ Gender+Sector+ Field1+ Region+ EduLv+ SubEduOver +SubMismatch +ObjOver +Core + J_year+ Staff+ EduZone+ Hours,test = "F" )
## Single term additions
## 
## Model:
## Salary ~ Gender
##             Df Sum of Sq      RSS   AIC F value  Pr(>F)    
## <none>                   8.24e+11 29310                    
## Sector       2  3.15e+10 7.93e+11 29257   28.77 5.6e-13 ***
## Field1      17  3.87e+10 7.85e+11 29274    4.16 2.7e-08 ***
## Region       5  2.37e+10 8.00e+11 29278    8.57 5.2e-08 ***
## EduLv        5  1.06e+11 7.19e+11 29121   42.49 < 2e-16 ***
## SubEduOver   2  3.24e+10 7.92e+11 29256   29.66 2.4e-13 ***
## SubMismatch  1  3.10e+10 7.93e+11 29256   56.62 9.2e-14 ***
## ObjOver      2  1.28e+09 8.23e+11 29312    1.13    0.32    
## Core         2  1.42e+10 8.10e+11 29289   12.67 3.5e-06 ***
## J_year       1  5.76e+10 7.67e+11 29207  109.03 < 2e-16 ***
## Staff        8  3.69e+10 7.87e+11 29259    8.46 2.7e-11 ***
## EduZone      1  7.99e+10 7.44e+11 29164  155.89 < 2e-16 ***
## Hours        1  9.64e+09 8.14e+11 29295   17.18 3.6e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
add1(update(null,~.+Gender+Sector+ EduLv+ Field1),
     scope = ~ Gender+Sector+ Field1+ Region+ EduLv+ SubEduOver +SubMismatch +ObjOver +Core + J_year+ Staff+ EduZone+ Hours,test = "F" )
## Single term additions
## 
## Model:
## Salary ~ Gender + Sector + EduLv + Field1
##             Df Sum of Sq      RSS   AIC F value  Pr(>F)    
## <none>                   6.81e+11 29080                    
## Region       5  9.60e+09 6.71e+11 29069    4.07 0.00112 ** 
## SubEduOver   2  3.48e+10 6.46e+11 29007   38.44 < 2e-16 ***
## SubMismatch  1  1.15e+10 6.69e+11 29057   24.63 7.8e-07 ***
## ObjOver      2  1.52e+10 6.65e+11 29051   16.28 1.0e-07 ***
## Core         2  7.34e+09 6.73e+11 29068    7.77 0.00044 ***
## J_year       1  4.70e+10 6.34e+11 28978  105.95 < 2e-16 ***
## Staff        8  1.59e+10 6.65e+11 29061    4.25 4.7e-05 ***
## EduZone      0  0.00e+00 6.81e+11 29080                    
## Hours        1  3.16e+09 6.77e+11 29075    6.66 0.00998 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
add1(update(null,~.+Gender+Sector+ EduLv+ Field1+ Region+ Staff+ J_year+ Hours),
     scope = ~ Gender+Sector+ Field1+ Region+ EduLv+ SubEduOver +SubMismatch +ObjOver +Core + J_year+ Staff+ EduZone+ Hours,test = "F" )
## Single term additions
## 
## Model:
## Salary ~ Gender + Sector + EduLv + Field1 + Region + Staff + 
##     J_year + Hours
##             Df Sum of Sq      RSS   AIC F value  Pr(>F)    
## <none>                   6.05e+11 28938                    
## SubEduOver   2  2.54e+10 5.79e+11 28879    31.0 6.7e-14 ***
## SubMismatch  1  1.01e+10 5.95e+11 28915    24.0 1.1e-06 ***
## ObjOver      2  1.40e+10 5.91e+11 28908    16.7 7.0e-08 ***
## Core         2  9.35e+09 5.95e+11 28919    11.1 1.7e-05 ***
## EduZone      0  0.00e+00 6.05e+11 28938                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
add1(update(null,~.+Gender+Sector+ EduLv+ Field1+ Region+ Staff+ J_year+ Hours+ SubEduOver),
     scope = ~ Gender+Sector+ Field1+ Region+ EduLv+ SubEduOver +SubMismatch +ObjOver +Core + J_year+ Staff+ EduZone+ Hours,test = "F" )
## Single term additions
## 
## Model:
## Salary ~ Gender + Sector + EduLv + Field1 + Region + Staff + 
##     J_year + Hours + SubEduOver
##             Df Sum of Sq      RSS   AIC F value  Pr(>F)    
## <none>                   5.79e+11 28879                    
## SubMismatch  1  2.67e+09 5.77e+11 28875    6.54  0.0107 *  
## ObjOver      2  9.98e+09 5.69e+11 28858   12.35 4.8e-06 ***
## Core         2  5.36e+09 5.74e+11 28870    6.58  0.0014 ** 
## EduZone      0  0.00e+00 5.79e+11 28879                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
add1(update(null,~.+Gender+Sector+ EduLv+ Field1+ Region+ Staff+ J_year+ Hours+ SubEduOver+SubMismatch),
     scope = ~ Gender+Sector+ Field1+ Region+ EduLv+ SubEduOver +SubMismatch +ObjOver +Core + J_year+ Staff+ EduZone+ Hours,test = "F" )
## Single term additions
## 
## Model:
## Salary ~ Gender + Sector + EduLv + Field1 + Region + Staff + 
##     J_year + Hours + SubEduOver + SubMismatch
##         Df Sum of Sq      RSS   AIC F value  Pr(>F)    
## <none>               5.77e+11 28875                    
## ObjOver  2  8.52e+09 5.68e+11 28857    10.6 2.8e-05 ***
## Core     2  3.74e+09 5.73e+11 28869     4.6    0.01 *  
## EduZone  0  0.00e+00 5.77e+11 28875                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
add1(update(null,~.+Gender+Sector+ EduLv+ Field1+ Region+ Staff+ J_year+ Hours+ ObjOver),
     scope = ~ Gender+Sector+ Field1+ Region+ EduLv+ SubEduOver +SubMismatch +ObjOver +Core + J_year+ Staff+ EduZone+ Hours,test = "F" )
## Single term additions
## 
## Model:
## Salary ~ Gender + Sector + EduLv + Field1 + Region + Staff + 
##     J_year + Hours + ObjOver
##             Df Sum of Sq      RSS   AIC F value  Pr(>F)    
## <none>                   5.91e+11 28908                    
## SubEduOver   2  2.15e+10 5.69e+11 28858   26.58 4.7e-12 ***
## SubMismatch  1  6.13e+09 5.85e+11 28895   14.78 0.00013 ***
## Core         2  4.78e+09 5.86e+11 28900    5.75 0.00325 ** 
## EduZone      0  0.00e+00 5.91e+11 28908                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
add1(update(null,~.+Gender+Sector+ EduLv+ Field1+ Region+ Staff+ J_year+ Hours+ ObjOver+ Core),
     scope = ~ Gender+Sector+ Field1+ Region+ EduLv+ SubEduOver +SubMismatch +ObjOver +Core + J_year+ Staff+ EduZone+ Hours,test = "F" )
## Single term additions
## 
## Model:
## Salary ~ Gender + Sector + EduLv + Field1 + Region + Staff + 
##     J_year + Hours + ObjOver + Core
##             Df Sum of Sq      RSS   AIC F value  Pr(>F)    
## <none>                   5.86e+11 28900                    
## SubEduOver   2  1.93e+10 5.67e+11 28855    24.0 5.8e-11 ***
## SubMismatch  1  3.89e+09 5.82e+11 28892     9.4  0.0022 ** 
## EduZone      0  0.00e+00 5.86e+11 28900                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

最終模型設定

# 薪資對性別
a1 <- update(null,~.+Gender)
summary(a1)
## 
## Call:
## lm(formula = Salary ~ Gender, data = p)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -33970 -16456  -6456   3544 246030 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    41456        800   51.80   <2e-16 ***
## Gender男       12514       1280    9.77   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 23800 on 1452 degrees of freedom
## Multiple R-squared:  0.0617, Adjusted R-squared:  0.0611 
## F-statistic: 95.5 on 1 and 1452 DF,  p-value: <2e-16
# 薪資對性別 / 公私立.教育程度.學群
a2 <- update(null,~.+Gender+Sector+ EduLv+ Field1)
summary(a2)
## 
## Call:
## lm(formula = Salary ~ Gender + Sector + EduLv + Field1, data = p)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -46127 -11496  -2719   6733 236723 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             33151       5135    6.46  1.5e-10 ***
## Gender男                 8218       1358    6.05  1.8e-09 ***
## Sector國外學校          13136       4631    2.84   0.0046 ** 
## Sector國立(公立)       2740       1380    1.99   0.0472 *  
## EduLv博士               23705       8206    2.89   0.0039 ** 
## EduLv碩士               16464       3758    4.38  1.3e-05 ***
## EduLv普通大學            2615       3667    0.71   0.4759    
## EduLv科技大學           -4590       3765   -1.22   0.2230    
## EduLv五專                7434       5442    1.37   0.1722    
## Field1大眾傳播學群      -3265       5177   -0.63   0.5284    
## Field1工程學群          10553       4244    2.49   0.0130 *  
## Field1文史哲學群        -2526       4665   -0.54   0.5882    
## Field1外語學群           3612       4664    0.77   0.4388    
## Field1生命科學學群      -2245       5430   -0.41   0.6794    
## Field1生物資源學群      -4154       6044   -0.69   0.4920    
## Field1地球與環境學群    -1096       6037   -0.18   0.8560    
## Field1法政學群          -1451       4860   -0.30   0.7654    
## Field1社會與心理學群    -2010       4426   -0.45   0.6498    
## Field1建築與設計學群     2703       5022    0.54   0.5904    
## Field1財經學群           2432       4466    0.54   0.5862    
## Field1教育學群           -241       4547   -0.05   0.9578    
## Field1資訊學群           5133       4462    1.15   0.2502    
## Field1管理學群          -2160       4357   -0.50   0.6202    
## Field1數理化學群         1547       4892    0.32   0.7519    
## Field1醫藥衛生學群      11426       4493    2.54   0.0111 *  
## Field1藝術學群          -6495       5481   -1.18   0.2363    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 21800 on 1428 degrees of freedom
## Multiple R-squared:  0.225,  Adjusted R-squared:  0.212 
## F-statistic: 16.6 on 25 and 1428 DF,  p-value: <2e-16
# 薪資對性別 / 公私立.教育程度.學群 / 地區.公司人數.年資.工時
a3 <- update(null,~.+Gender+Sector+ EduLv+ Field1+ Region+ Staff+ J_year+ Hours)
summary(a3)
## 
## Call:
## lm(formula = Salary ~ Gender + Sector + EduLv + Field1 + Region + 
##     Staff + J_year + Hours, data = p)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -40250 -10516  -2106   6322 237176 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            5741.0    13578.0    0.42   0.6725    
## Gender男               7199.7     1299.4    5.54  3.6e-08 ***
## Sector國外學校         8954.5     4427.1    2.02   0.0433 *  
## Sector國立(公立)     2907.0     1326.7    2.19   0.0286 *  
## EduLv博士             14650.3     7860.4    1.86   0.0626 .  
## EduLv碩士             16825.9     3593.4    4.68  3.1e-06 ***
## EduLv普通大學          5334.5     3498.6    1.52   0.1275    
## EduLv科技大學         -1658.8     3592.6   -0.46   0.6443    
## EduLv五專              4868.0     5185.8    0.94   0.3480    
## Field1大眾傳播學群    -2636.2     4943.9   -0.53   0.5940    
## Field1工程學群         9724.1     4067.3    2.39   0.0169 *  
## Field1文史哲學群      -3985.5     4442.1   -0.90   0.3698    
## Field1外語學群         2041.5     4436.7    0.46   0.6455    
## Field1生命科學學群     -560.9     5181.4   -0.11   0.9138    
## Field1生物資源學群    -1965.7     5755.1   -0.34   0.7327    
## Field1地球與環境學群  -4167.5     5748.7   -0.72   0.4686    
## Field1法政學群         -418.6     4636.4   -0.09   0.9281    
## Field1社會與心理學群  -1467.1     4208.3   -0.35   0.7274    
## Field1建築與設計學群   4506.5     4780.3    0.94   0.3460    
## Field1財經學群         2780.6     4255.4    0.65   0.5136    
## Field1教育學群         -308.6     4335.4   -0.07   0.9433    
## Field1資訊學群         4860.2     4250.6    1.14   0.2531    
## Field1管理學群        -3083.4     4145.1   -0.74   0.4571    
## Field1數理化學群        855.0     4670.7    0.18   0.8548    
## Field1醫藥衛生學群    10046.6     4321.7    2.32   0.0202 *  
## Field1藝術學群        -4841.0     5215.6   -0.93   0.3535    
## Region北北基           3695.9     3101.0    1.19   0.2335    
## Region桃竹苗           7370.9     3313.0    2.22   0.0263 *  
## Region中彰投           1696.3     3265.2    0.52   0.6035    
## Region雲嘉南          -1156.7     3226.5   -0.36   0.7200    
## Region高屏澎           -510.2     3221.8   -0.16   0.8742    
## Staff10-29人           8521.2    12149.8    0.70   0.4832    
## Staff100-199人        10919.7    12112.7    0.90   0.3675    
## Staff1人              -6856.0    14178.7   -0.48   0.6288    
## Staff2-9人             3516.5    12217.2    0.29   0.7735    
## Staff200-499           7458.2    12140.4    0.61   0.5391    
## Staff30-49人           9729.3    12213.0    0.80   0.4258    
## Staff50-99人           9346.2    12139.5    0.77   0.4415    
## Staff500人以上        12308.4    12074.6    1.02   0.3082    
## J_year                 1237.3      114.4   10.82  < 2e-16 ***
## Hours                   185.4       58.7    3.16   0.0016 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20700 on 1413 degrees of freedom
## Multiple R-squared:  0.312,  Adjusted R-squared:  0.292 
## F-statistic:   16 on 40 and 1413 DF,  p-value: <2e-16
# 薪資對性別 / 公私立.教育程度.學群 / 地區.公司人數.年資.工時 / 自評過量
a41 <- update(null,~.+Gender+Sector+ EduLv+ Field1+ Region+ Staff+ J_year+ Hours+ SubEduOver)
summary(a41)
## 
## Call:
## lm(formula = Salary ~ Gender + Sector + EduLv + Field1 + Region + 
##     Staff + J_year + Hours + SubEduOver, data = p)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -43320 -10300  -2252   6208 232961 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              8566.3    13304.7    0.64  0.51977    
## Gender男                 7703.3     1275.4    6.04  2.0e-09 ***
## Sector國外學校          11680.8     4351.0    2.68  0.00735 ** 
## Sector國立(公立)       2703.7     1306.6    2.07  0.03870 *  
## EduLv博士               13018.6     7703.7    1.69  0.09126 .  
## EduLv碩士               17042.0     3522.2    4.84  1.5e-06 ***
## EduLv普通大學            4907.6     3427.2    1.43  0.15237    
## EduLv科技大學           -1772.9     3519.2   -0.50  0.61450    
## EduLv五專                5982.9     5081.1    1.18  0.23920    
## Field1大眾傳播學群      -1712.9     4854.9   -0.35  0.72428    
## Field1工程學群          10180.9     3984.1    2.56  0.01071 *  
## Field1文史哲學群        -3133.4     4352.6   -0.72  0.47171    
## Field1外語學群           2569.2     4347.7    0.59  0.55466    
## Field1生命科學學群       1545.7     5083.7    0.30  0.76114    
## Field1生物資源學群      -1886.4     5639.0   -0.33  0.73803    
## Field1地球與環境學群    -2208.7     5636.5   -0.39  0.69522    
## Field1法政學群           1589.1     4557.4    0.35  0.72738    
## Field1社會與心理學群    -1752.3     4126.6   -0.42  0.67116    
## Field1建築與設計學群     5433.2     4685.2    1.16  0.24638    
## Field1財經學群           2479.2     4176.1    0.59  0.55284    
## Field1教育學群           -662.3     4246.7   -0.16  0.87610    
## Field1資訊學群           5214.4     4163.4    1.25  0.21062    
## Field1管理學群          -1581.8     4065.1   -0.39  0.69725    
## Field1數理化學群         1518.6     4575.8    0.33  0.74003    
## Field1醫藥衛生學群      10080.0     4233.6    2.38  0.01740 *  
## Field1藝術學群          -3681.0     5112.1   -0.72  0.47161    
## Region北北基             2360.4     3042.0    0.78  0.43792    
## Region桃竹苗             6267.2     3248.9    1.93  0.05393 .  
## Region中彰投              649.0     3200.8    0.20  0.83935    
## Region雲嘉南            -2092.9     3162.3   -0.66  0.50820    
## Region高屏澎            -1086.5     3158.2   -0.34  0.73087    
## Staff10-29人             8006.9    11900.7    0.67  0.50118    
## Staff100-199人          10705.9    11864.1    0.90  0.36701    
## Staff1人                -4246.6    13893.5   -0.31  0.75991    
## Staff2-9人               4249.2    11966.8    0.36  0.72258    
## Staff200-499             7267.5    11891.7    0.61  0.54120    
## Staff30-49人             9213.6    11962.5    0.77  0.44131    
## Staff50-99人             9307.6    11891.5    0.78  0.43393    
## Staff500人以上          12268.4    11826.7    1.04  0.29975    
## J_year                   1145.1      112.7   10.16  < 2e-16 ***
## Hours                     208.3       57.6    3.62  0.00031 ***
## SubEduOver高於工作要求  -9690.9     1372.7   -7.06  2.6e-12 ***
## SubEduOver低於工作要求  -8540.9     1843.3   -4.63  3.9e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20300 on 1411 degrees of freedom
## Multiple R-squared:  0.341,  Adjusted R-squared:  0.321 
## F-statistic: 17.4 on 42 and 1411 DF,  p-value: <2e-16
# 薪資對性別 / 公私立.教育程度.學群 / 地區.公司人數.年資.工時 / 自評過量.自評關聯
a42 <- update(null,~.+Gender+Sector+ EduLv+ Field1+ Region+ Staff+ J_year+ Hours+ SubEduOver+SubMismatch)
summary(a42)
## 
## Call:
## lm(formula = Salary ~ Gender + Sector + EduLv + Field1 + Region + 
##     Staff + J_year + Hours + SubEduOver + SubMismatch, data = p)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -42485 -10370  -2109   6104 231342 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              5053.3    13349.6    0.38  0.70509    
## Gender男                 7909.1     1275.5    6.20  7.4e-10 ***
## Sector國外學校          11898.6     4343.3    2.74  0.00623 ** 
## Sector國立(公立)       2649.8     1304.2    2.03  0.04236 *  
## EduLv博士               11260.7     7719.3    1.46  0.14485    
## EduLv碩士               16210.0     3530.3    4.59  4.8e-06 ***
## EduLv普通大學            4800.0     3420.7    1.40  0.16078    
## EduLv科技大學           -2094.9     3514.6   -0.60  0.55123    
## EduLv五專                5785.2     5071.7    1.14  0.25420    
## Field1大眾傳播學群      -1436.0     4846.6   -0.30  0.76705    
## Field1工程學群          10178.9     3976.3    2.56  0.01057 *  
## Field1文史哲學群        -3039.1     4344.3   -0.70  0.48432    
## Field1外語學群           2869.2     4340.8    0.66  0.50874    
## Field1生命科學學群       2500.4     5087.5    0.49  0.62316    
## Field1生物資源學群       -586.6     5650.9   -0.10  0.91734    
## Field1地球與環境學群    -2241.8     5625.5   -0.40  0.69031    
## Field1法政學群           1532.7     4548.5    0.34  0.73619    
## Field1社會與心理學群    -1857.3     4118.7   -0.45  0.65210    
## Field1建築與設計學群     5612.1     4676.5    1.20  0.23032    
## Field1財經學群           2720.0     4169.0    0.65  0.51422    
## Field1教育學群           -885.7     4239.3   -0.21  0.83453    
## Field1資訊學群           5327.5     4155.5    1.28  0.20005    
## Field1管理學群          -1214.9     4059.7   -0.30  0.76479    
## Field1數理化學群         1600.3     4566.9    0.35  0.72608    
## Field1醫藥衛生學群       9696.0     4227.9    2.29  0.02198 *  
## Field1藝術學群          -2987.8     5109.3   -0.58  0.55879    
## Region北北基             2470.1     3036.3    0.81  0.41605    
## Region桃竹苗             6432.7     3243.1    1.98  0.04751 *  
## Region中彰投              793.2     3195.0    0.25  0.80398    
## Region雲嘉南            -1920.7     3156.9   -0.61  0.54300    
## Region高屏澎             -860.8     3153.3   -0.27  0.78489    
## Staff10-29人             7386.4    11879.9    0.62  0.53421    
## Staff100-199人           9925.4    11844.8    0.84  0.40220    
## Staff1人                -5186.2    13871.2   -0.37  0.70855    
## Staff2-9人               3610.3    11946.0    0.30  0.76253    
## Staff200-499             6575.1    11871.6    0.55  0.57977    
## Staff30-49人             8487.1    11942.5    0.71  0.47741    
## Staff50-99人             8503.0    11872.4    0.72  0.47399    
## Staff500人以上          11628.9    11806.3    0.98  0.32480    
## J_year                   1150.2      112.5   10.23  < 2e-16 ***
## Hours                     209.1       57.5    3.64  0.00029 ***
## SubEduOver高於工作要求  -8595.2     1435.5   -5.99  2.7e-09 ***
## SubEduOver低於工作要求  -7640.1     1873.1   -4.08  4.8e-05 ***
## SubMismatch              1231.3      481.6    2.56  0.01068 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20200 on 1410 degrees of freedom
## Multiple R-squared:  0.344,  Adjusted R-squared:  0.324 
## F-statistic: 17.2 on 43 and 1410 DF,  p-value: <2e-16
# 薪資對性別 / 公私立.教育程度.學群 / 地區.公司人數.年資.工時 / 客評過量
a51 <- update(null,~.+Gender+Sector+ EduLv+ Field1+ Region+ Staff+ J_year+ Hours+ ObjOver)
summary(a51)
## 
## Call:
## lm(formula = Salary ~ Gender + Sector + EduLv + Field1 + Region + 
##     Staff + J_year + Hours + ObjOver, data = p)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -39783 -10215  -2215   6286 237864 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           11493.7    13483.2    0.85   0.3941    
## Gender男               6919.5     1287.1    5.38  8.9e-08 ***
## Sector國外學校         8438.5     4380.4    1.93   0.0543 .  
## Sector國立(公立)     2570.9     1317.9    1.95   0.0513 .  
## EduLv博士             15250.6     7776.7    1.96   0.0501 .  
## EduLv碩士             18820.2     3572.9    5.27  1.6e-07 ***
## EduLv普通大學          4264.2     3468.3    1.23   0.2191    
## EduLv科技大學         -2253.0     3555.0   -0.63   0.5263    
## EduLv五專               625.2     5208.7    0.12   0.9045    
## Field1大眾傳播學群    -4306.9     4904.8   -0.88   0.3800    
## Field1工程學群         9275.8     4023.8    2.31   0.0213 *  
## Field1文史哲學群      -5091.7     4399.1   -1.16   0.2473    
## Field1外語學群         1856.9     4388.7    0.42   0.6723    
## Field1生命科學學群    -1043.3     5126.3   -0.20   0.8388    
## Field1生物資源學群    -1318.4     5694.2   -0.23   0.8169    
## Field1地球與環境學群  -5437.8     5692.6   -0.96   0.3396    
## Field1法政學群          -37.0     4591.9   -0.01   0.9936    
## Field1社會與心理學群  -4256.0     4203.7   -1.01   0.3115    
## Field1建築與設計學群   3275.7     4735.3    0.69   0.4892    
## Field1財經學群         2011.1     4211.4    0.48   0.6331    
## Field1教育學群        -1790.1     4296.3   -0.42   0.6770    
## Field1資訊學群         3690.2     4211.0    0.88   0.3810    
## Field1管理學群        -3244.9     4100.2   -0.79   0.4288    
## Field1數理化學群       -606.9     4627.2   -0.13   0.8957    
## Field1醫藥衛生學群     8604.7     4292.4    2.00   0.0452 *  
## Field1藝術學群        -6525.7     5170.8   -1.26   0.2071    
## Region北北基           3639.6     3068.3    1.19   0.2357    
## Region桃竹苗           7602.0     3280.8    2.32   0.0206 *  
## Region中彰投           2083.2     3235.9    0.64   0.5198    
## Region雲嘉南          -1360.3     3196.4   -0.43   0.6705    
## Region高屏澎           -552.3     3191.0   -0.17   0.8626    
## Staff10-29人           7744.8    12019.1    0.64   0.5194    
## Staff100-199人        10083.9    11982.7    0.84   0.4002    
## Staff1人              -5656.3    14028.8   -0.40   0.6869    
## Staff2-9人             2757.5    12085.8    0.23   0.8196    
## Staff200-499           6803.7    12008.6    0.57   0.5711    
## Staff30-49人           9125.1    12081.6    0.76   0.4502    
## Staff50-99人           9109.7    12008.4    0.76   0.4482    
## Staff500人以上        11877.4    11943.4    0.99   0.3202    
## J_year                 1214.7      113.3   10.72  < 2e-16 ***
## Hours                   180.4       58.1    3.10   0.0019 ** 
## ObjOverover           -5993.6     1334.8   -4.49  7.7e-06 ***
## ObjOverunder           6162.0     2806.2    2.20   0.0283 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20500 on 1411 degrees of freedom
## Multiple R-squared:  0.327,  Adjusted R-squared:  0.307 
## F-statistic: 16.4 on 42 and 1411 DF,  p-value: <2e-16
# 薪資對性別 / 公私立.教育程度.學群 / 地區.公司人數.年資.工時 / 客評過量.客評關聯
a52 <- update(null,~.+Gender+Sector+ EduLv+ Field1+ Region+ Staff+ J_year+ Hours+ ObjOver+ Core)
summary(a52)
## 
## Call:
## lm(formula = Salary ~ Gender + Sector + EduLv + Field1 + Region + 
##     Staff + J_year + Hours + ObjOver + Core, data = p)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -43456 -10367  -2184   5992 239420 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           10435.0    13445.3    0.78  0.43782    
## Gender男               7028.0     1284.2    5.47  5.2e-08 ***
## Sector國外學校         8931.2     4370.4    2.04  0.04118 *  
## Sector國立(公立)     2601.1     1313.9    1.98  0.04794 *  
## EduLv博士             13932.6     7764.5    1.79  0.07296 .  
## EduLv碩士             17949.4     3570.4    5.03  5.6e-07 ***
## EduLv普通大學          4205.7     3456.9    1.22  0.22395    
## EduLv科技大學         -2488.0     3543.8   -0.70  0.48274    
## EduLv五專               384.5     5192.2    0.07  0.94098    
## Field1大眾傳播學群    -4131.3     4889.8   -0.84  0.39832    
## Field1工程學群         8949.6     4011.6    2.23  0.02584 *  
## Field1文史哲學群      -5905.6     4400.1   -1.34  0.17976    
## Field1外語學群         1266.1     4386.8    0.29  0.77292    
## Field1生命科學學群     -284.7     5114.5   -0.06  0.95562    
## Field1生物資源學群    -1332.1     5676.1   -0.23  0.81448    
## Field1地球與環境學群  -6147.8     5689.2   -1.08  0.28006    
## Field1法政學群         -501.7     4579.1   -0.11  0.91277    
## Field1社會與心理學群  -4503.0     4190.8   -1.07  0.28279    
## Field1建築與設計學群   2762.5     4721.9    0.59  0.55861    
## Field1財經學群         1967.1     4197.3    0.47  0.63939    
## Field1教育學群        -2940.4     4309.7   -0.68  0.49518    
## Field1資訊學群         2711.6     4208.2    0.64  0.51944    
## Field1管理學群        -3534.0     4090.4   -0.86  0.38774    
## Field1數理化學群       -338.6     4612.4   -0.07  0.94149    
## Field1醫藥衛生學群     7593.4     4294.7    1.77  0.07727 .  
## Field1藝術學群        -6805.9     5156.6   -1.32  0.18710    
## Region北北基           3706.3     3058.7    1.21  0.22581    
## Region桃竹苗           7670.4     3269.8    2.35  0.01912 *  
## Region中彰投           2231.2     3225.4    0.69  0.48921    
## Region雲嘉南          -1239.5     3186.4   -0.39  0.69733    
## Region高屏澎           -518.8     3180.6   -0.16  0.87047    
## Staff10-29人           7639.5    11979.8    0.64  0.52378    
## Staff100-199人         9464.5    11945.6    0.79  0.42832    
## Staff1人              -6445.5    13984.7   -0.46  0.64494    
## Staff2-9人             2066.3    12047.5    0.17  0.86384    
## Staff200-499           6509.3    11969.1    0.54  0.58663    
## Staff30-49人           8786.7    12042.5    0.73  0.46573    
## Staff50-99人           8589.4    11971.1    0.72  0.47318    
## Staff500人以上        11189.4    11906.2    0.94  0.34749    
## J_year                 1243.1      113.4   10.96  < 2e-16 ***
## Hours                   179.7       57.9    3.10  0.00197 ** 
## ObjOverover           -5033.1     1367.3   -3.68  0.00024 ***
## ObjOverunder           5577.0     2818.0    1.98  0.04801 *  
## Core部分關聯           4760.2     1694.3    2.81  0.00503 ** 
## Core核心關聯           3489.3     1396.4    2.50  0.01258 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20400 on 1409 degrees of freedom
## Multiple R-squared:  0.333,  Adjusted R-squared:  0.312 
## F-statistic:   16 on 44 and 1409 DF,  p-value: <2e-16
# 或許拿掉公司人數?
# 薪資對性別 / 公私立.教育程度.學群 / 地區.年資.工時 / 自評過量.自評關聯
a53 <- update(null,~.+Gender+Sector+ EduLv+ Field1+ Region+ J_year+ Hours+ ObjOver+ Core)
summary(a53)
## 
## Call:
## lm(formula = Salary ~ Gender + Sector + EduLv + Field1 + Region + 
##     J_year + Hours + ObjOver + Core, data = p)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -45434 -10790  -2176   6517 240433 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           17629.4     6366.3    2.77  0.00569 ** 
## Gender男               7517.8     1286.3    5.84  6.3e-09 ***
## Sector國外學校         8865.8     4381.4    2.02  0.04321 *  
## Sector國立(公立)     2852.6     1306.0    2.18  0.02911 *  
## EduLv博士             14460.2     7799.9    1.85  0.06396 .  
## EduLv碩士             19048.2     3580.7    5.32  1.2e-07 ***
## EduLv普通大學          4958.0     3470.6    1.43  0.15335    
## EduLv科技大學         -2236.5     3561.2   -0.63  0.53008    
## EduLv五專               312.8     5216.4    0.06  0.95219    
## Field1大眾傳播學群    -3875.8     4901.2   -0.79  0.42921    
## Field1工程學群         9427.7     4003.5    2.35  0.01867 *  
## Field1文史哲學群      -5647.1     4411.0   -1.28  0.20067    
## Field1外語學群         1052.1     4405.9    0.24  0.81130    
## Field1生命科學學群    -1305.8     5117.5   -0.26  0.79863    
## Field1生物資源學群    -1492.8     5688.6   -0.26  0.79304    
## Field1地球與環境學群  -5943.3     5704.9   -1.04  0.29768    
## Field1法政學群         -130.9     4585.5   -0.03  0.97723    
## Field1社會與心理學群  -4522.7     4206.1   -1.08  0.28244    
## Field1建築與設計學群   1880.6     4741.0    0.40  0.69167    
## Field1財經學群         2473.6     4207.1    0.59  0.55664    
## Field1教育學群        -3078.3     4313.5   -0.71  0.47557    
## Field1資訊學群         3107.5     4217.6    0.74  0.46137    
## Field1管理學群        -2854.7     4102.8   -0.70  0.48667    
## Field1數理化學群        338.8     4611.5    0.07  0.94144    
## Field1醫藥衛生學群     8902.4     4274.6    2.08  0.03746 *  
## Field1藝術學群        -7529.4     5172.3   -1.46  0.14569    
## Region北北基           3872.3     3072.8    1.26  0.20781    
## Region桃竹苗           8045.8     3283.4    2.45  0.01439 *  
## Region中彰投           1858.5     3242.9    0.57  0.56668    
## Region雲嘉南          -1492.1     3200.4   -0.47  0.64112    
## Region高屏澎           -940.3     3191.3   -0.29  0.76832    
## J_year                 1263.2      113.3   11.15  < 2e-16 ***
## Hours                   177.2       58.2    3.05  0.00236 ** 
## ObjOverover           -4888.1     1370.4   -3.57  0.00037 ***
## ObjOverunder           5883.9     2825.0    2.08  0.03745 *  
## Core部分關聯           5118.9     1694.7    3.02  0.00257 ** 
## Core核心關聯           3442.0     1400.8    2.46  0.01412 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20500 on 1417 degrees of freedom
## Multiple R-squared:  0.321,  Adjusted R-squared:  0.303 
## F-statistic: 18.6 on 36 and 1417 DF,  p-value: <2e-16