WHO <- read.csv("~/Dropbox/Data/Data 605/who.csv", header = TRUE, stringsAsFactors = FALSE)
head(WHO)
## Country LifeExp InfantSurvival Under5Survival TBFree
## 1 Afghanistan 42 0.835 0.743 0.99769
## 2 Albania 71 0.985 0.983 0.99974
## 3 Algeria 71 0.967 0.962 0.99944
## 4 Andorra 82 0.997 0.996 0.99983
## 5 Angola 41 0.846 0.740 0.99656
## 6 Antigua and Barbuda 73 0.990 0.989 0.99991
## PropMD PropRN PersExp GovtExp TotExp
## 1 0.000228841 0.000572294 20 92 112
## 2 0.001143127 0.004614439 169 3128 3297
## 3 0.001060478 0.002091362 108 5184 5292
## 4 0.003297297 0.003500000 2589 169725 172314
## 5 0.000070400 0.001146162 36 1620 1656
## 6 0.000142857 0.002773810 503 12543 13046
who.lm <- lm(LifeExp ~ TotExp, data = WHO)
who.lm
##
## Call:
## lm(formula = LifeExp ~ TotExp, data = WHO)
##
## Coefficients:
## (Intercept) TotExp
## 6.475e+01 6.297e-05
summary(who.lm)
##
## Call:
## lm(formula = LifeExp ~ TotExp, data = WHO)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
plot(WHO$LifeExp ~ WHO$TotExp, xlab = "Personal and Government Expenditures", ylab = "Life Expectancy")
\(y(LifeExp) = 64.75 + 6.297e-05 * TotExp\)
F Stats = 1 regression degree of freedom and 188 residual degrees of freedom is 65.26. R-Squared Value is \(0.2577\). This tells us that only 25.77% of our data is accounted for in this model. Not a significant amount. Standard Error is \(6.297e-05\) P-Values are \(2e-16\) and \(7.71e-14\). Both values are close to 0, making them significant.
qqnorm(who.lm$residuals)
qqline(who.lm$residuals)
hist(who.lm$residuals)
life_exp4.6 <- WHO$LifeExp^4.6
tot_exp0.06 <- WHO$TotExp^.06
plot(life_exp4.6 ~ tot_exp0.06, xlab = "Personal and Government Expenditures transformed by ^.06", ylab = "Life Expectancy transformed by ^4.6")
who.lm.2 <- lm(life_exp4.6 ~ tot_exp0.06)
summary(who.lm.2)
##
## Call:
## lm(formula = life_exp4.6 ~ tot_exp0.06)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308616089 -53978977 13697187 59139231 211951764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -736527910 46817945 -15.73 <2e-16 ***
## tot_exp0.06 620060216 27518940 22.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
## F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16
who.lm.2
##
## Call:
## lm(formula = life_exp4.6 ~ tot_exp0.06)
##
## Coefficients:
## (Intercept) tot_exp0.06
## -736527909 620060216
\(y(LifeExp) = -736527909 + 620060216 * TotExp\)
F Stats = 1 regression degree of freedom and 188 residual degrees of freedom is 507.7. R-Squared Value is \(0.7298\). This tells us that 72.98% of our data is accounted for in this model. A big improvement from the last model. Standard Error is \(620060216\) P-Values are both \(<2e-16\). Both values are close to 0, making them significant.
qqnorm(who.lm.2$residuals)
qqline(who.lm.2$residuals)
hist(who.lm.2$residuals)
TotExp <- 1.5
results <- -736527909 + 620060216 * TotExp
results <- results ^(1/4.6)
results
## [1] 63.31153
Forcast for life expectancy is 63.31 when Total Expenditure is 1.5
TotExp = 2.5
results <- -736527909 + 620060216 * TotExp
results <- results^(1/4.6)
results
## [1] 86.50645
Forcast for life expectancy is 86.51 when Total Expenditure is 2.5
who.multreg <- lm(LifeExp ~ PropMD * TotExp + PropMD * TotExp, data=WHO)
who.multreg
##
## Call:
## lm(formula = LifeExp ~ PropMD * TotExp + PropMD * TotExp, data = WHO)
##
## Coefficients:
## (Intercept) PropMD TotExp PropMD:TotExp
## 6.277e+01 1.497e+03 7.233e-05 -6.026e-03
summary(who.multreg)
##
## Call:
## lm(formula = LifeExp ~ PropMD * TotExp + PropMD * TotExp, data = WHO)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.320 -4.132 2.098 6.540 13.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.277e+01 7.956e-01 78.899 < 2e-16 ***
## PropMD 1.497e+03 2.788e+02 5.371 2.32e-07 ***
## TotExp 7.233e-05 8.982e-06 8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03 1.472e-03 -4.093 6.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared: 0.3574, Adjusted R-squared: 0.3471
## F-statistic: 34.49 on 3 and 186 DF, p-value: < 2.2e-16
$y(LifeExp) = 62.77 + 1.497e+03 * PropMD + 7.233e-05 * TotExp + -6.026e-03(PropMDTotExp)
F Stats = 3 regression degree of freedom on 186 is 34.49. R-Squared Value is \(0.3574\). This tells us that 35.74% of our data is accounted for in this model. The P-Values are 2e-16, 2.32e-07, 9.39e-14, 6.35e-05, which are all very close to zero. Stardard errors are 2.788e+02, 8.982e-06, 1.472e-03
TotExp <- 14
PropMD <- .03
results <- 62.77 + 1.497e+03 * PropMD + 7.233e-05 * TotExp + -6.026e-03*(PropMD*TotExp)
results
## [1] 107.6785
By comparing the percentage of population who are doctors to the total life expetancy does not seem realistic. This would assume that the population had access to these doctors, which is not always the case.