Variables in Dataset
Graduation Rate: IPEDS graduation rates (GR) include only full-time, first-time, degree-/certificate-seeking students who started and finished at the same institution. GRs do not represent all of the students at an institution (e.g., GR excludes part-time and transfer students). The GRs in this dataset are calculated as the # of students who completed their program within 150% of normal time divided by the # of students in the entering cohort. Student subgroups include African American, Hispanic, African American + Hispanic, and White. If you’re interested you can read more about IPEDS Graduation Rates.
Services: These are services/supports that may or may not be provided by an institution. They include: weekend/evening courses, remedial services, academic/career counseling, employment services, placement services for completers, and on-campus daycare for students’ children.
Degree of Urbanization: Represents the urbanicity by population size of the institution’s location. The coding is based on a methodology developed by the U.S. Census Bureau’s Population Division in 2005. In this dataset I recoded urbanization into a single locale (e.g., the codes ‘City: Large’, ‘City: Midsize’, and ‘City: Small’ are combined into the single code ‘City’).
Full- and Part-Time Instructional Staff: An occupational category that includes staff who are either: 1) Primarily Instruction, or 2) Instruction combined with research and/or public service. IPEDS’s intent for this category is to include all individuals whose primary occupation includes instruction at the institution.
Here’s the data frame—not too exciting.
library(tidyverse)
fset <- read.csv("ipeds4.27_v5.csv", header = TRUE)
fset
Below are some descriptives. The Frontier Set has almost the same number of 2- and 4-year institutions. Over half of the 2-institutions are campuses of the Tennessee College of Applied Technology. (The Tennessee Board of Regents is part of the Frontier Set.)
Let’s look at urbanization: Most of 4-year institutions are in cities, followed by towns, suburbs, and rural areas. The 2-year institutions have a much more even spread.
ggplot(data = fset) +
geom_bar(mapping = aes(x = IHE.Level, fill = Urban))

The plot below shows the maximum, minimum, and median values for minority student graduation rates by urbanicity.
ggplot(data = fset) +
stat_summary(
mapping = aes(x = Urban, y = GR.AfAmHis),
fun.ymin = min,
fun.ymax = max,
fun.y = median
)

Same information below but now in a boxplot, with color representing the type of institution. You’ll notice there’s one suburban 2-year institution that’s an outlier. I went back to the data to investigate and it’s the Tennessee College of Applied Technology in Jackson, TN. Their GR for minority students is 69% (for white students it’s 83%). The institution with the next highest GR rate for minority students (18%) that’s also in the suburbs is Volunteer State Community College (their GR for white students is only 26%). This time I went the extra mile and added labels to the plot :)
ggplot(fset, aes(Urban, GR.AfAmHis)) +
geom_boxplot(aes(color = IHE.Level)) +
labs(title = "Minority student GRs by Location and Level of IHE") +
labs(
x = "Location of Institutions",
y = "GR of Minority Students",
color = "Institution Type"
)

Moving on, here’s the relationship between minority student graduation rates and the number of full-time instructional staff.
ggplot(data = fset) +
geom_point(mapping = aes(x = InstFT , y = GR.AfAmHis, color = IHE.Level))
ggplot(fset, aes(InstFT, GR.AfAmHis)) +
geom_point(aes(color = IHE.Level)) +
labs(title = "GRs of minority students by FT instructional staff") +
labs(
x = "Number of full-time instructional staff",
y = "GRs of Minority Students",
color = "Institution Type"
)

The plot below has the same information but I added the shape aesthetic to identify institutions that offer weekend and evening courses.
ggplot(data = fset) +
geom_point(mapping = aes(x = InstFT, y = GR.AfAmHis, color = IHE.Level, shape = wnd.eve))
ggplot(fset, aes(InstFT, GR.AfAmHis)) +
geom_point(aes(color = IHE.Level, shape = wnd.eve)) +
labs(title = "GRs of minority students by FT instructional staff") +
labs(
x = "Number of full-time instructional staff",
y = "GRs of Minority Studentss",
color = "Institution Type",
shape = "IHE offers weekend/evening courses"
)

That’s the end of my experiment. Some thoughts:
- No surprise, but I found it much more fun to work with a dataset that I care about.
- I ended up doing most of the data transformation in Excel (e.g., recoding, renaming, and creating derived variables). I got hung up trying to do this in R for over a week, so for now I’ll take the path of least resistance and do what works so I can keep moving.
- The spell-check feature in R is awesome—I can’t tell you how many times I misspelled “institution.”
LS0tCnRpdGxlOiAiRnJvbnRpZXIgU2V0IgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCioqKgpIZXJlIGlzIHNvbWUgUiBleHBlcmltZW50YXRpb24gdXNpbmcgW0lQRURTXShodHRwczovL25jZXMuZWQuZ292L2lwZWRzL3VzZS10aGUtZGF0YSkgZGF0YSBmb3IgYSBncm91cCBvZiBpbnN0aXR1dGlvbnMgY2FsbGVkIHRoZSBbRnJvbnRpZXIgU2V0XShodHRwczovL3Bvc3RzZWNvbmRhcnkuZ2F0ZXNmb3VuZGF0aW9uLm9yZy9mcm9udGllci1zZXQtZmFjdC1zaGVldC8pLiBGb3IgdGhpcyBleGVyY2lzZSBJIGRlbGliZXJhdGVseSBjaG9vc2UgdmFyaWFibGVzIHRoYXQgaGFkIDIwMTYgaW5mb3JtYXRpb24gYXZhaWxhYmxlIGZvciBlYWNoIEZyb250aWVyIFNldCBpbnN0aXR1dGlvbi4gSSBkZWxldGVkIHR3byBjYXNlcyAoaW5zdGl0dXRpb25zKSB0aGF0IGRpZG4ndCBoYXZlIGFueSBkYXRhIG9uIHN0dWRlbnQgZ3JhZHVhdGlvbiByYXRlcy4gCgojIyMjIFZhcmlhYmxlcyBpbiBEYXRhc2V0CgoqKkdyYWR1YXRpb24gUmF0ZSoqOiBJUEVEUyBncmFkdWF0aW9uIHJhdGVzIChHUikgaW5jbHVkZSBvbmx5IGZ1bGwtdGltZSwgZmlyc3QtdGltZSwgZGVncmVlLS9jZXJ0aWZpY2F0ZS1zZWVraW5nIHN0dWRlbnRzIHdobyBzdGFydGVkIGFuZCBmaW5pc2hlZCBhdCB0aGUgc2FtZSBpbnN0aXR1dGlvbi4gR1JzIGRvIG5vdCByZXByZXNlbnQgYWxsIG9mIHRoZSBzdHVkZW50cyBhdCBhbiBpbnN0aXR1dGlvbiAoZS5nLiwgR1IgZXhjbHVkZXMgcGFydC10aW1lIGFuZCB0cmFuc2ZlciBzdHVkZW50cykuIFRoZSBHUnMgaW4gdGhpcyBkYXRhc2V0IGFyZSBjYWxjdWxhdGVkIGFzIHRoZSAjIG9mIHN0dWRlbnRzIHdobyBjb21wbGV0ZWQgdGhlaXIgcHJvZ3JhbSB3aXRoaW4gMTUwJSBvZiBub3JtYWwgdGltZSBkaXZpZGVkIGJ5IHRoZSAjIG9mIHN0dWRlbnRzIGluIHRoZSBlbnRlcmluZyBjb2hvcnQuIFN0dWRlbnQgc3ViZ3JvdXBzIGluY2x1ZGUgQWZyaWNhbiBBbWVyaWNhbiwgSGlzcGFuaWMsIEFmcmljYW4gQW1lcmljYW4gKyBIaXNwYW5pYywgYW5kIFdoaXRlLiBJZiB5b3UncmUgaW50ZXJlc3RlZCB5b3UgY2FuIHJlYWQgbW9yZSBhYm91dCBbSVBFRFMgR3JhZHVhdGlvbiBSYXRlc10oaHR0cHM6Ly9uY2VzLmVkLmdvdi9wdWJzMjAxNy8yMDE3MDQ2LnBkZikuCgoqKlNlcnZpY2VzKio6IFRoZXNlIGFyZSBzZXJ2aWNlcy9zdXBwb3J0cyB0aGF0IG1heSBvciBtYXkgbm90IGJlIHByb3ZpZGVkIGJ5IGFuIGluc3RpdHV0aW9uLiBUaGV5IGluY2x1ZGU6IHdlZWtlbmQvZXZlbmluZyBjb3Vyc2VzLCByZW1lZGlhbCBzZXJ2aWNlcywgYWNhZGVtaWMvY2FyZWVyIGNvdW5zZWxpbmcsIGVtcGxveW1lbnQgc2VydmljZXMsIHBsYWNlbWVudCBzZXJ2aWNlcyBmb3IgY29tcGxldGVycywgYW5kIG9uLWNhbXB1cyBkYXljYXJlIGZvciBzdHVkZW50cycgY2hpbGRyZW4uCgoqKkRlZ3JlZSBvZiBVcmJhbml6YXRpb24qKjogUmVwcmVzZW50cyB0aGUgdXJiYW5pY2l0eSBieSBwb3B1bGF0aW9uIHNpemUgb2YgdGhlIGluc3RpdHV0aW9uJ3MgbG9jYXRpb24uIFRoZSBjb2RpbmcgaXMgYmFzZWQgb24gYSBtZXRob2RvbG9neSBkZXZlbG9wZWQgYnkgdGhlIFUuUy4gQ2Vuc3VzIEJ1cmVhdSdzIFBvcHVsYXRpb24gRGl2aXNpb24gaW4gMjAwNS4gSW4gdGhpcyBkYXRhc2V0IEkgcmVjb2RlZCB1cmJhbml6YXRpb24gaW50byBhIHNpbmdsZSBsb2NhbGUgKGUuZy4sIHRoZSBjb2RlcyAnQ2l0eTogTGFyZ2UnLCAnQ2l0eTogTWlkc2l6ZScsIGFuZCAnQ2l0eTogU21hbGwnIGFyZSBjb21iaW5lZCBpbnRvIHRoZSBzaW5nbGUgY29kZSAnQ2l0eScpLgoKKipGdWxsLSBhbmQgUGFydC1UaW1lIEluc3RydWN0aW9uYWwgU3RhZmYqKjogQW4gb2NjdXBhdGlvbmFsIGNhdGVnb3J5IHRoYXQgaW5jbHVkZXMgc3RhZmYgd2hvIGFyZSBlaXRoZXI6IDEpIFByaW1hcmlseSBJbnN0cnVjdGlvbiwgb3IgMikgSW5zdHJ1Y3Rpb24gY29tYmluZWQgd2l0aCByZXNlYXJjaCBhbmQvb3IgcHVibGljIHNlcnZpY2UuIElQRURTJ3MgaW50ZW50IGZvciB0aGlzIGNhdGVnb3J5IGlzIHRvIGluY2x1ZGUgYWxsIGluZGl2aWR1YWxzIHdob3NlIHByaW1hcnkgb2NjdXBhdGlvbiBpbmNsdWRlcyBpbnN0cnVjdGlvbiBhdCB0aGUgaW5zdGl0dXRpb24uCgoqKioKSGVyZSdzIHRoZSBkYXRhIGZyYW1lLS0tbm90IHRvbyBleGNpdGluZy4KYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKQpmc2V0IDwtIHJlYWQuY3N2KCJpcGVkczQuMjdfdjUuY3N2IiwgaGVhZGVyID0gVFJVRSkKZnNldApgYGAKKioqCkJlbG93IGFyZSBzb21lIGRlc2NyaXB0aXZlcy4gVGhlIEZyb250aWVyIFNldCBoYXMgYWxtb3N0IHRoZSBzYW1lIG51bWJlciBvZiAyLSBhbmQgNC15ZWFyIGluc3RpdHV0aW9ucy4gT3ZlciBoYWxmIG9mIHRoZSAyLWluc3RpdHV0aW9ucyBhcmUgY2FtcHVzZXMgb2YgdGhlIFRlbm5lc3NlZSBDb2xsZWdlIG9mIEFwcGxpZWQgVGVjaG5vbG9neS4gKFRoZSBUZW5uZXNzZWUgQm9hcmQgb2YgUmVnZW50cyBpcyBwYXJ0IG9mIHRoZSBGcm9udGllciBTZXQuKQoKTGV0J3MgbG9vayBhdCB1cmJhbml6YXRpb246IE1vc3Qgb2YgNC15ZWFyIGluc3RpdHV0aW9ucyBhcmUgaW4gY2l0aWVzLCBmb2xsb3dlZCBieSB0b3ducywgc3VidXJicywgYW5kIHJ1cmFsIGFyZWFzLiBUaGUgMi15ZWFyIGluc3RpdHV0aW9ucyBoYXZlIGEgbXVjaCBtb3JlIGV2ZW4gc3ByZWFkLgpgYGB7cn0KZ2dwbG90KGRhdGEgPSBmc2V0KSArIAogIGdlb21fYmFyKG1hcHBpbmcgPSBhZXMoeCA9IElIRS5MZXZlbCwgZmlsbCA9IFVyYmFuKSkKYGBgCioqKgoKVGhlIHBsb3QgYmVsb3cgc2hvd3MgdGhlIG1heGltdW0sIG1pbmltdW0sIGFuZCBtZWRpYW4gdmFsdWVzIGZvciBtaW5vcml0eSBzdHVkZW50IGdyYWR1YXRpb24gcmF0ZXMgYnkgdXJiYW5pY2l0eS4KYGBge3J9CmdncGxvdChkYXRhID0gZnNldCkgKyAKICBzdGF0X3N1bW1hcnkoCiAgICBtYXBwaW5nID0gYWVzKHggPSBVcmJhbiwgeSA9IEdSLkFmQW1IaXMpLAogICAgZnVuLnltaW4gPSBtaW4sCiAgICBmdW4ueW1heCA9IG1heCwKICAgIGZ1bi55ID0gbWVkaWFuCiAgKQpgYGAKClNhbWUgaW5mb3JtYXRpb24gYmVsb3cgYnV0IG5vdyBpbiBhIGJveHBsb3QsIHdpdGggY29sb3IgcmVwcmVzZW50aW5nIHRoZSB0eXBlIG9mIGluc3RpdHV0aW9uLiBZb3UnbGwgbm90aWNlIHRoZXJlJ3Mgb25lIHN1YnVyYmFuIDIteWVhciBpbnN0aXR1dGlvbiB0aGF0J3MgYW4gb3V0bGllci4gSSB3ZW50IGJhY2sgdG8gdGhlIGRhdGEgdG8gaW52ZXN0aWdhdGUgYW5kIGl0J3MgdGhlIFtUZW5uZXNzZWUgQ29sbGVnZSBvZiBBcHBsaWVkIFRlY2hub2xvZ3kgaW4gSmFja3NvbiwgVE5dKGh0dHBzOi8vZ29vLmdsL21hcHMvaGd6dFdwSzlURDkyKS4gVGhlaXIgR1IgZm9yIG1pbm9yaXR5IHN0dWRlbnRzIGlzIDY5JSAoZm9yIHdoaXRlIHN0dWRlbnRzIGl0J3MgODMlKS4gVGhlIGluc3RpdHV0aW9uIHdpdGggdGhlIG5leHQgaGlnaGVzdCBHUiByYXRlIGZvciBtaW5vcml0eSBzdHVkZW50cyAoMTglKSB0aGF0J3MgYWxzbyBpbiB0aGUgc3VidXJicyBpcyBWb2x1bnRlZXIgU3RhdGUgQ29tbXVuaXR5IENvbGxlZ2UgKHRoZWlyIEdSIGZvciB3aGl0ZSBzdHVkZW50cyBpcyBvbmx5IDI2JSkuIFRoaXMgdGltZSBJIHdlbnQgdGhlIGV4dHJhIG1pbGUgYW5kIGFkZGVkIGxhYmVscyB0byB0aGUgcGxvdCA6KQpgYGB7cn0KZ2dwbG90KGZzZXQsIGFlcyhVcmJhbiwgR1IuQWZBbUhpcykpICsKICAgZ2VvbV9ib3hwbG90KGFlcyhjb2xvciA9IElIRS5MZXZlbCkpICsKICAgICBsYWJzKHRpdGxlID0gIk1pbm9yaXR5IHN0dWRlbnQgR1JzIGJ5IExvY2F0aW9uIGFuZCBMZXZlbCBvZiBJSEUiKSArCiAgICAgbGFicygKICAgICAgeCA9ICJMb2NhdGlvbiBvZiBJbnN0aXR1dGlvbnMiLAogICAgICB5ID0gIkdSIG9mIE1pbm9yaXR5IFN0dWRlbnRzIiwKICAgIGNvbG9yID0gIkluc3RpdHV0aW9uIFR5cGUiCikKYGBgCioqKgpNb3Zpbmcgb24sIGhlcmUncyB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gbWlub3JpdHkgc3R1ZGVudCBncmFkdWF0aW9uIHJhdGVzIGFuZCB0aGUgbnVtYmVyIG9mIGZ1bGwtdGltZSBpbnN0cnVjdGlvbmFsIHN0YWZmLgoKYGBge3J9CmdncGxvdChkYXRhID0gZnNldCkgKyAKICBnZW9tX3BvaW50KG1hcHBpbmcgPSBhZXMoeCA9IEluc3RGVCAsIHkgPSBHUi5BZkFtSGlzLCBjb2xvciA9IElIRS5MZXZlbCkpIApgYGAKCmBgYHtyfQpnZ3Bsb3QoZnNldCwgYWVzKEluc3RGVCwgR1IuQWZBbUhpcykpICsKICBnZW9tX3BvaW50KGFlcyhjb2xvciA9IElIRS5MZXZlbCkpICsKICBsYWJzKHRpdGxlID0gIkdScyBvZiBtaW5vcml0eSBzdHVkZW50cyBieSBGVCBpbnN0cnVjdGlvbmFsIHN0YWZmIikgKwogIGxhYnMoCiAgICB4ID0gIk51bWJlciBvZiBmdWxsLXRpbWUgaW5zdHJ1Y3Rpb25hbCBzdGFmZiIsCiAgICB5ID0gIkdScyBvZiBNaW5vcml0eSBTdHVkZW50cyIsCiAgICBjb2xvciA9ICJJbnN0aXR1dGlvbiBUeXBlIgogICkKYGBgCgoKVGhlIHBsb3QgYmVsb3cgaGFzIHRoZSBzYW1lIGluZm9ybWF0aW9uIGJ1dCBJIGFkZGVkIHRoZSBzaGFwZSBhZXN0aGV0aWMgdG8gaWRlbnRpZnkgaW5zdGl0dXRpb25zIHRoYXQgb2ZmZXIgd2Vla2VuZCBhbmQgZXZlbmluZyBjb3Vyc2VzLiAKYGBge3J9CmdncGxvdChkYXRhID0gZnNldCkgKyAKICBnZW9tX3BvaW50KG1hcHBpbmcgPSBhZXMoeCA9IEluc3RGVCwgeSA9IEdSLkFmQW1IaXMsIGNvbG9yID0gSUhFLkxldmVsLCBzaGFwZSA9IHduZC5ldmUpKQpgYGAKCmBgYHtyfQpnZ3Bsb3QoZnNldCwgYWVzKEluc3RGVCwgR1IuQWZBbUhpcykpICsKICBnZW9tX3BvaW50KGFlcyhjb2xvciA9IElIRS5MZXZlbCwgc2hhcGUgPSB3bmQuZXZlKSkgKwogICBsYWJzKHRpdGxlID0gIkdScyBvZiBtaW5vcml0eSBzdHVkZW50cyBieSBGVCBpbnN0cnVjdGlvbmFsIHN0YWZmIikgKwogICBsYWJzKAogICAgeCA9ICJOdW1iZXIgb2YgZnVsbC10aW1lIGluc3RydWN0aW9uYWwgc3RhZmYiLAogICAgeSA9ICJHUnMgb2YgTWlub3JpdHkgU3R1ZGVudHNzIiwKICAgIGNvbG9yID0gIkluc3RpdHV0aW9uIFR5cGUiLAogICAgc2hhcGUgPSAiSUhFIG9mZmVycyB3ZWVrZW5kL2V2ZW5pbmcgY291cnNlcyIKICApCmBgYAoKKioqCgpUaGF0J3MgdGhlIGVuZCBvZiBteSBleHBlcmltZW50LiBTb21lIHRob3VnaHRzOgoKKiBObyBzdXJwcmlzZSwgYnV0IEkgZm91bmQgaXQgKm11Y2gqIG1vcmUgZnVuIHRvIHdvcmsgd2l0aCBhIGRhdGFzZXQgdGhhdCBJIGNhcmUgYWJvdXQuCiogSSBlbmRlZCB1cCBkb2luZyBtb3N0IG9mIHRoZSBkYXRhIHRyYW5zZm9ybWF0aW9uIGluIEV4Y2VsIChlLmcuLCByZWNvZGluZywgcmVuYW1pbmcsIGFuZCBjcmVhdGluZyBkZXJpdmVkIHZhcmlhYmxlcykuIEkgZ290IGh1bmcgdXAgdHJ5aW5nIHRvIGRvIHRoaXMgaW4gUiBmb3Igb3ZlciBhIHdlZWssIHNvIGZvciBub3cgSSdsbCB0YWtlIHRoZSBwYXRoIG9mIGxlYXN0IHJlc2lzdGFuY2UgYW5kIGRvIHdoYXQgd29ya3Mgc28gSSBjYW4ga2VlcCBtb3ZpbmcuIAoqIFRoZSBzcGVsbC1jaGVjayBmZWF0dXJlIGluIFIgaXMgYXdlc29tZS0tLUkgY2FuJ3QgdGVsbCB5b3UgaG93IG1hbnkgdGltZXMgSSBtaXNzcGVsbGVkICJpbnN0aXR1dGlvbi4iCgo=