Data is real-world World Health Organization data from 2008. It includes r nrow(who) observations for r ncol(who) variables. Data dictionary:
who <- read.csv('who.csv')
head(who)
## Country LifeExp InfantSurvival Under5Survival TBFree
## 1 Afghanistan 42 0.835 0.743 0.99769
## 2 Albania 71 0.985 0.983 0.99974
## 3 Algeria 71 0.967 0.962 0.99944
## 4 Andorra 82 0.997 0.996 0.99983
## 5 Angola 41 0.846 0.740 0.99656
## 6 Antigua and Barbuda 73 0.990 0.989 0.99991
## PropMD PropRN PersExp GovtExp TotExp
## 1 0.000228841 0.000572294 20 92 112
## 2 0.001143127 0.004614439 169 3128 3297
## 3 0.001060478 0.002091362 108 5184 5292
## 4 0.003297297 0.003500000 2589 169725 172314
## 5 0.000070400 0.001146162 36 1620 1656
## 6 0.000142857 0.002773810 503 12543 13046
summary(who)
## Country LifeExp InfantSurvival
## Afghanistan : 1 Min. :40.00 Min. :0.8350
## Albania : 1 1st Qu.:61.25 1st Qu.:0.9433
## Algeria : 1 Median :70.00 Median :0.9785
## Andorra : 1 Mean :67.38 Mean :0.9624
## Angola : 1 3rd Qu.:75.00 3rd Qu.:0.9910
## Antigua and Barbuda: 1 Max. :83.00 Max. :0.9980
## (Other) :184
## Under5Survival TBFree PropMD PropRN
## Min. :0.7310 Min. :0.9870 Min. :0.0000196 Min. :0.0000883
## 1st Qu.:0.9253 1st Qu.:0.9969 1st Qu.:0.0002444 1st Qu.:0.0008455
## Median :0.9745 Median :0.9992 Median :0.0010474 Median :0.0027584
## Mean :0.9459 Mean :0.9980 Mean :0.0017954 Mean :0.0041336
## 3rd Qu.:0.9900 3rd Qu.:0.9998 3rd Qu.:0.0024584 3rd Qu.:0.0057164
## Max. :0.9970 Max. :1.0000 Max. :0.0351290 Max. :0.0708387
##
## PersExp GovtExp TotExp
## Min. : 3.00 Min. : 10.0 Min. : 13
## 1st Qu.: 36.25 1st Qu.: 559.5 1st Qu.: 584
## Median : 199.50 Median : 5385.0 Median : 5541
## Mean : 742.00 Mean : 40953.5 Mean : 41696
## 3rd Qu.: 515.25 3rd Qu.: 25680.2 3rd Qu.: 26331
## Max. :6350.00 Max. :476420.0 Max. :482750
##
The above provides a glimpse of what the data is showing for each column and category.
Provide a scatterplot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error,and p-values only. Discuss whether the assumptions of simple linear regression met.
# Linear regression model build
lm <- lm(LifeExp ~ TotExp, data=who)
# Scatterplot of dependent and independent variables
plot(LifeExp~TotExp, data=who,
xlab="Total Expenditures", ylab="Life Expectancy",
main="Life Expectancy vs Total Expenditures")
abline(lm)
# Linear regression model summary
summary(lm)
##
## Call:
## lm(formula = LifeExp ~ TotExp, data = who)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
# Residuals variability plot
plot(lm$fitted.values, lm$residuals,
xlab="Fitted Values", ylab="Residuals",
main="Residuals Plot for Linear Model")
abline(h=0)
## Residuals Q-Q plot
qqnorm(lm$residuals)
qqline(lm$residuals)
Three items are providing insight into the shape of the data.
Looking a the above it is clear that the relationship is not linear and that there is a differnt underlying relationship in the data.
Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and r re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values. Which model is “better?”
Transforming the variables as noted in Question 2.
# Transformation
LifeExpNew <- who$LifeExp^4.6
TotExpNew <- who$TotExp^0.06
# Linear regression model build
lmNew <- lm(LifeExpNew ~ TotExpNew)
# Scatterplot of dependent and independent variables
plot(LifeExpNew~TotExpNew,
xlab="Total Expenditures", ylab="Life Expectancy",
main="Life Expectancy vs Total Expenditures (Modified)")
abline(lmNew)
# Linear regression model summary
summary(lmNew)
##
## Call:
## lm(formula = LifeExpNew ~ TotExpNew)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308616089 -53978977 13697187 59139231 211951764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -736527910 46817945 -15.73 <2e-16 ***
## TotExpNew 620060216 27518940 22.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
## F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16
# Residuals variability plot
plot(lmNew$fitted.values, lmNew$residuals,
xlab="Fitted Values", ylab="Residuals",
main="Residuals Plot New")
abline(h=0)
# Residuals Q-Q plot
qqnorm(lmNew$residuals)
qqline(lmNew$residuals)
Three items are providing insight into the shape of the data.
Looking at the above it is clear that the relationship is better described by the power functions. The QQ plot shows minimal deviations at the tail indicating that there is no skewness based upon the new linear model developed. The random residuals around the 0 line also indicate that the linear model
predictdata <- data.frame(TotExpNew=c(1.5,2.5))
predict(lmNew, predictdata,interval="predict")^(1/4.6)
## fit lwr upr
## 1 63.31153 35.93545 73.00793
## 2 86.50645 81.80643 90.43414
Predicting the values at 1.5 adn 2.5 provides the following results.
The prediction at 1.5 is 63 years with a CI(35.93545, 73.00793).
The prediction at 2.5 is 87 year with a CI(81.80643, 90.43414).
Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model?
LifeExp = b0+b1 x PropMd + b2 x TotExp + b3 x PropMD x TotExp
# Multiple linear regression model build
lm4 <- lm(LifeExp ~ PropMD + TotExp + TotExp:PropMD, data=who)
# Linear regression model summary
summary(lm4)
##
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + TotExp:PropMD, data = who)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.320 -4.132 2.098 6.540 13.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.277e+01 7.956e-01 78.899 < 2e-16 ***
## PropMD 1.497e+03 2.788e+02 5.371 2.32e-07 ***
## TotExp 7.233e-05 8.982e-06 8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03 1.472e-03 -4.093 6.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared: 0.3574, Adjusted R-squared: 0.3471
## F-statistic: 34.49 on 3 and 186 DF, p-value: < 2.2e-16
# Residuals variability plot
plot(lm4$fitted.values, lm4$residuals,
xlab="Fitted Values", ylab="Residuals",
main="Residuals Plot Cross Variable")
abline(h=0)
# Residuals Q-Q plot
qqnorm(lm4$residuals)
qqline(lm4$residuals)
Three items are providing insight into the shape of the data.
Looking a the above it is clear that the relationship is not linear and that there is a differnt underlying relationship in the data. In this case, the interaction between Total Expenditure and MD Population didn’t generate a new variable that was a better indicator of the data.
Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?
newdata <- data.frame(PropMD=0.03, TotExp=14)
predict(lm4, newdata,interval="predict")
## fit lwr upr
## 1 107.696 84.24791 131.1441
Predicting the values at PropMD=0.03, TotExp=14 provides the following results.
The prediction is 108 years with a CI(84.24791, 131.1441).
The data maxes out about the 90-100 range. Seeing a prediction of 108 becomes unrealistic when the CI also shows 132 years.
The model does what it is supposed to which is predict but it’s up the data scientist to also interpret the results of the model.