# R in Action (2nd ed): Chapter 16
# Cluster analysis
# requires packaged NbClust, flexclust, rattle
# install.packages(c("NbClust", "flexclust", "rattle"))
par(ask=TRUE)
opar <- par(no.readonly=FALSE)
# Calculating Distances
data(nutrient, package="flexclust")
head(nutrient, 2)
## energy protein fat calcium iron
## BEEF BRAISED 340 20 28 9 2.6
## HAMBURGER 245 21 17 9 2.7
d <- dist(nutrient)
as.matrix(d)[1:4,1:4]
## BEEF BRAISED HAMBURGER BEEF ROAST BEEF STEAK
## BEEF BRAISED 0.00000 95.6400 80.93429 35.24202
## HAMBURGER 95.64000 0.0000 176.49218 130.87784
## BEEF ROAST 80.93429 176.4922 0.00000 45.76418
## BEEF STEAK 35.24202 130.8778 45.76418 0.00000
# Listing 16.1 - Average linkage clustering of nutrient data
data(nutrient, package="flexclust")
row.names(nutrient) <- tolower(row.names(nutrient))
nutrient.scaled <- scale(nutrient)
d <- dist(nutrient.scaled)
fit.average <- hclust(d, method="average")
plot(fit.average, hang=-1, cex=.8, main="Average Linkage Clustering")

# Listing 16.2 - Selecting the number of clusters
library(NbClust)
nc <- NbClust(nutrient.scaled, distance="euclidean",
min.nc=2, max.nc=15, method="average")
## Warning in pf(beale, pp, df2): NaNs produced
## Warning in pf(beale, pp, df2): NaNs produced

## *** : The Hubert index is a graphical method of determining the number of clusters.
## In the plot of Hubert index, we seek a significant knee that corresponds to a
## significant increase of the value of the measure i.e the significant peak in Hubert
## index second differences plot.
##

## *** : The D index is a graphical method of determining the number of clusters.
## In the plot of D index, we seek a significant knee (the significant peak in Dindex
## second differences plot) that corresponds to a significant increase of the value of
## the measure.
##
## *******************************************************************
## * Among all indices:
## * 4 proposed 2 as the best number of clusters
## * 4 proposed 3 as the best number of clusters
## * 2 proposed 4 as the best number of clusters
## * 4 proposed 5 as the best number of clusters
## * 1 proposed 9 as the best number of clusters
## * 1 proposed 10 as the best number of clusters
## * 2 proposed 13 as the best number of clusters
## * 1 proposed 14 as the best number of clusters
## * 4 proposed 15 as the best number of clusters
##
## ***** Conclusion *****
##
## * According to the majority rule, the best number of clusters is 2
##
##
## *******************************************************************
par(opar)
## Warning in par(opar): graphical parameter "cin" cannot be set
## Warning in par(opar): graphical parameter "cra" cannot be set
## Warning in par(opar): graphical parameter "csi" cannot be set
## Warning in par(opar): graphical parameter "cxy" cannot be set
## Warning in par(opar): graphical parameter "din" cannot be set
## Warning in par(opar): graphical parameter "page" cannot be set
table(nc$Best.n[1,])
##
## 0 1 2 3 4 5 9 10 13 14 15
## 2 1 4 4 2 4 1 1 2 1 4
barplot(table(nc$Best.n[1,]),
xlab="Numer of Clusters", ylab="Number of Criteria",
main="Number of Clusters Chosen by 26 Criteria")

# Listing 16.3 - Obtaining the final cluster solution
clusters <- cutree(fit.average, k=5)
table(clusters)
## clusters
## 1 2 3 4 5
## 7 16 1 2 1
aggregate(nutrient, by=list(cluster=clusters), median)
## cluster energy protein fat calcium iron
## 1 1 340.0 19 29 9 2.50
## 2 2 170.0 20 8 13 1.45
## 3 3 160.0 26 5 14 5.90
## 4 4 57.5 9 1 78 5.70
## 5 5 180.0 22 9 367 2.50
aggregate(as.data.frame(nutrient.scaled), by=list(cluster=clusters),
median)
## cluster energy protein fat calcium iron
## 1 1 1.3101024 0.0000000 1.3785620 -0.4480464 0.08110456
## 2 2 -0.3696099 0.2352002 -0.4869384 -0.3967868 -0.63743114
## 3 3 -0.4684165 1.6464016 -0.7534384 -0.3839719 2.40779157
## 4 4 -1.4811842 -2.3520023 -1.1087718 0.4361807 2.27092763
## 5 5 -0.2708033 0.7056007 -0.3981050 4.1396825 0.08110456
plot(fit.average, hang=-1, cex=.8,
main="Average Linkage Clustering\n5 Cluster Solution")
rect.hclust(fit.average, k=5)

# Plot function for within groups sum of squares by number of clusters
wssplot <- function(data, nc=15, seed=1234){
wss <- (nrow(data)-1)*sum(apply(data,2,var))
for (i in 2:nc){
set.seed(seed)
wss[i] <- sum(kmeans(data, centers=i)$withinss)}
plot(1:nc, wss, type="b", xlab="Number of Clusters",
ylab="Within groups sum of squares")}
## Avoiding non-existent clusters
library(fMultivar)
## Loading required package: timeDate
## Loading required package: timeSeries
## Loading required package: fBasics
set.seed(1234)
df <- rnorm2d(1000, rho=.5)
df <- as.data.frame(df)
plot(df, main="Bivariate Normal Distribution with rho=0.5")

wssplot(df)

library(NbClust)
nc <- NbClust(df, min.nc=2, max.nc=15, method="kmeans")

## *** : The Hubert index is a graphical method of determining the number of clusters.
## In the plot of Hubert index, we seek a significant knee that corresponds to a
## significant increase of the value of the measure i.e the significant peak in Hubert
## index second differences plot.
##

## *** : The D index is a graphical method of determining the number of clusters.
## In the plot of D index, we seek a significant knee (the significant peak in Dindex
## second differences plot) that corresponds to a significant increase of the value of
## the measure.
##
## *******************************************************************
## * Among all indices:
## * 8 proposed 2 as the best number of clusters
## * 5 proposed 3 as the best number of clusters
## * 1 proposed 4 as the best number of clusters
## * 1 proposed 5 as the best number of clusters
## * 1 proposed 8 as the best number of clusters
## * 4 proposed 10 as the best number of clusters
## * 1 proposed 12 as the best number of clusters
## * 2 proposed 13 as the best number of clusters
##
## ***** Conclusion *****
##
## * According to the majority rule, the best number of clusters is 2
##
##
## *******************************************************************
par(opar)
## Warning in par(opar): graphical parameter "cin" cannot be set
## Warning in par(opar): graphical parameter "cra" cannot be set
## Warning in par(opar): graphical parameter "csi" cannot be set
## Warning in par(opar): graphical parameter "cxy" cannot be set
## Warning in par(opar): graphical parameter "din" cannot be set
## Warning in par(opar): graphical parameter "page" cannot be set
barplot(table(nc$Best.n[1,]),
xlab="Numer of Clusters", ylab="Number of Criteria",
main ="Number of Clusters Chosen by 26 Criteria")
library(ggplot2)

library(cluster)
fit <- pam(df, k=2)
df$clustering <- factor(fit$clustering)
ggplot(data=df, aes(x=V1, y=V2, color=clustering, shape=clustering)) +
geom_point() + ggtitle("Clustering of Bivariate Normal Data")

plot(nc$All.index[,4], type="o", ylab="CCC",
xlab="Number of clusters", col="blue")
