When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

library(ggplot2)
data <- 'C:/Users/andre/Downloads/test.txt'
US_trade<-read.table(data,sep="\t",head=TRUE )
data2 <- 'C:/Users/andre/Downloads/test2.txt'
by_country<-read.table(data2,sep="\t",head=TRUE)
by_country_balance<-by_country[2:21,1:10]
by_country_export<-by_country[23:42,1:10]
by_country_import<-by_country[44:63,1:10]
US_trade$order<-1:26
US_trade
##            Period Balance.Total Balance.Goods Balance.Services
## 1    2016 January        -43409        -64096            20686
## 2   2016 February        -45290        -65509            20220
## 3      2016 March        -37380        -58003            20623
## 4      2016 April        -38422        -58893            20471
## 5        2016 May        -41520        -62347            20827
## 6       2016 June        -43835        -65206            21372
## 7       2016 July        -41294        -62724            21430
## 8     2016 August        -41130        -61236            20106
## 9  2016 September        -38466        -59435            20969
## 10   2016 October        -43069        -63399            20330
## 11  2016 November        -46373        -66830            20458
## 12  2016 December        -44607        -64829            20222
## 13   2017 January        -48692        -69008            20315
## 14  2017 February        -44424        -65303            20879
## 15     2017 March        -44729        -66072            21343
## 16     2017 April        -48057        -68358            20301
## 17       2017 May        -47793        -67548            19755
## 18      2017 June        -45596        -65366            19770
## 19      2017 July        -45385        -65253            19868
## 20    2017 August        -44582        -64699            20118
## 21 2017 September        -45298        -65344            20046
## 22   2017 October        -49098        -69496            20398
## 23  2017 November        -50880        -71065            20184
## 24  2017 December        -53908        -73700            19792
## 25   2018 January        -56665        -76709            20044
## 26  2018 February        -57591        -77011            19419
##    Export.Total Export.Goods Export.Services Import.Total Import.Goods
## 1        178660       116655           62005       222070       180750
## 2        180892       119138           61754       226182       184648
## 3        179897       117977           61921       217277       175979
## 4        181895       119815           62080       220317       178709
## 5        182166       119760           62407       223686       182106
## 6        183770       120824           62946       227605       186030
## 7        185330       122227           63102       226624       184951
## 8        187385       124075           63310       228514       185311
## 9        188123       124741           63382       226588       184175
## 10       185599       122514           63084       228668       185913
## 11       184848       121653           63196       231221       188483
## 12       189507       126326           63181       234114       191155
## 13       191180       127505           63675       239872       196512
## 14       191793       127634           64159       236217       192937
## 15       191700       126982           64717       236428       193054
## 16       190534       126386           64148       238591       194745
## 17       190841       126548           64292       238633       194096
## 18       193050       128488           64562       238645       193854
## 19       193322       128163           65159       238707       193416
## 20       193721       128352           65370       238303       193051
## 21       195940       129993           65948       241238       195337
## 22       195705       129509           66196       244803       199006
## 23       200208       133943           66265       251089       205008
## 24       203606       137217           66389       257514       210918
## 25       200948       134149           66799       257612       210857
## 26       204445       137179           67266       262037       214190
##    Import.Services order
## 1            41319     1
## 2            41534     2
## 3            41298     3
## 4            41609     4
## 5            41580     5
## 6            41575     6
## 7            41673     7
## 8            43203     8
## 9            42413     9
## 10           42754    10
## 11           42738    11
## 12           42959    12
## 13           43359    13
## 14           43280    14
## 15           43374    15
## 16           43847    16
## 17           44538    17
## 18           44792    18
## 19           45291    19
## 20           45252    20
## 21           45902    21
## 22           45797    22
## 23           46080    23
## 24           46596    24
## 25           46755    25
## 26           47847    26
p<-ggplot(US_trade, aes(x=reorder(Period, order), y=Balance.Total,group=1)) + geom_line(aes( colour = "Total")) + geom_point() + theme(axis.text.x = element_text(angle = 90, hjust = 1))

p<-p+geom_line(aes(y = Balance.Services, colour = "Service")) + geom_point(aes(y = Balance.Services, colour = "Service")) 
p<-p+geom_line(aes(y = Balance.Goods, colour = "Good")) + geom_point(aes(y = Balance.Goods, colour = "Good"))
p<-p + ylab("Balance")+xlab("Period") + ggtitle("US Trade Balance, Good VS Service") + scale_colour_manual(values=c("red","green","blue"))
p

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyr)
## Warning: package 'tidyr' was built under R version 3.4.4
China_Balance<-by_country_balance %>%
filter(Country.and.Area == "China") %>%
gather("Period",Balance,2:10) %>%
filter(Period != "Year.to.Date.2017") %>%
filter( Period != "Year.to.Date.2018" )
China_Balance$order <- c(7,6,1,2,3,4,5)


China_import<-by_country_import %>%
filter(Country.and.Area == "China") %>%
gather("Period",Import,2:10) %>%
filter(Period != "Year.to.Date.2017") %>%
filter( Period != "Year.to.Date.2018" )
China_import$order <- c(7,6,1,2,3,4,5)


China_export<-by_country_export %>%
filter(Country.and.Area == "China") %>%
gather("Period",Export,2:10) %>%
filter(Period != "Year.to.Date.2017") %>%
filter( Period != "Year.to.Date.2018" )
China_export$order <- c(7,6,1,2,3,4,5)

China_Balance$Import <- China_import$Import
China_Balance$Export <- China_export$Export

p<-ggplot(China_Balance, aes(x=reorder(Period, order), y=Balance,group=1)) + geom_line(aes( colour = "Total")) + geom_point() + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + xlab("Period") + ggtitle("US Trade Import Export from China ")  
p<- p+geom_line(aes(y = Import, colour = "Import")) + geom_point(aes(y = Import, colour = "Import"))
p<-p+geom_line(aes(y = Export, colour = "Export")) + geom_point(aes(y = Export, colour = "Export")) + scale_colour_manual(values=c("red","green","blue"))
p

balance<-by_country_balance %>%
gather("Period",Balance,2:10) %>%
filter(Period != "Year.to.Date.2017") %>%
filter( Period != "Year.to.Date.2018" )
order<-select(China_Balance,order,Period)
balance<-left_join(balance,order, "Period")
ggplot(balance, aes(x=reorder(Period, order), y=Balance,group=Country.and.Area)) + geom_line(aes( colour = Country.and.Area)) +  theme(axis.text.x = element_text(angle = 90, hjust = 1)) + ylab("Balance")+xlab("Period") + ggtitle("US Trade Balance By Country") 

t<-balance %>%
group_by(Period) %>%
summarise(Total = sum(Balance)) 
rat<-right_join(t,balance,"Period")%>%
mutate(ratio = Balance/Total)
ggplot(rat, aes(fill=Period, y=ratio, x=Country.and.Area)) + 
geom_bar(position="dodge", stat="identity") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + ggtitle("US Trade Balance Contirbution By Country")