Many college courses conclude by giving students the opportunity to evaluate the course and the instructor anonymously. However, the use of these student evaluations as an indicator of course quality and teaching effectiveness is often criticized because these measures may reflect the influence of non-teaching related characteristics, such as the physical appearance of the instructor. The article titled, “Beauty in the classroom: instructors’ pulchritude and putative pedagogical productivity” (Hamermesh and Parker, 2005) found that instructors who are viewed to be better looking receive higher instructional ratings. (Daniel S. Hamermesh, Amy Parker, Beauty in the classroom: instructors pulchritude and putative pedagogical productivity, Economics of Education Review, Volume 24, Issue 4, August 2005, Pages 369-376, ISSN 0272-7757, 10.1016/j.econedurev.2004.07.013. http://www.sciencedirect.com/science/article/pii/S0272775704001165.)
In this lab we will analyze the data from this study in order to learn what goes into a positive professor evaluation.
The data were gathered from end of semester student evaluations for a large sample of professors from the University of Texas at Austin. In addition, six students rated the professors’ physical appearance. (This is aslightly modified version of the original data set that was released as part of the replication data for Data Analysis Using Regression and Multilevel/Hierarchical Models (Gelman and Hill, 2007).) The result is a data frame where each row contains a different course and columns represent variables about the courses and professors.
load("more/evals.RData")
variable | description |
---|---|
score |
average professor evaluation score: (1) very unsatisfactory - (5) excellent. |
rank |
rank of professor: teaching, tenure track, tenured. |
ethnicity |
ethnicity of professor: not minority, minority. |
gender |
gender of professor: female, male. |
language |
language of school where professor received education: english or non-english. |
age |
age of professor. |
cls_perc_eval |
percent of students in class who completed evaluation. |
cls_did_eval |
number of students in class who completed evaluation. |
cls_students |
total number of students in class. |
cls_level |
class level: lower, upper. |
cls_profs |
number of professors teaching sections in course in sample: single, multiple. |
cls_credits |
number of credits of class: one credit (lab, PE, etc.), multi credit. |
bty_f1lower |
beauty rating of professor from lower level female: (1) lowest - (10) highest. |
bty_f1upper |
beauty rating of professor from upper level female: (1) lowest - (10) highest. |
bty_f2upper |
beauty rating of professor from second upper level female: (1) lowest - (10) highest. |
bty_m1lower |
beauty rating of professor from lower level male: (1) lowest - (10) highest. |
bty_m1upper |
beauty rating of professor from upper level male: (1) lowest - (10) highest. |
bty_m2upper |
beauty rating of professor from second upper level male: (1) lowest - (10) highest. |
bty_avg |
average beauty rating of professor. |
pic_outfit |
outfit of professor in picture: not formal, formal. |
pic_color |
color of professor’s picture: color, black & white. |
This is an observational study. This is not an experiment as the survey was collected at the end of the semester and the data was used to answer the question. Since it is technically impossible to liaise correlation to causation, to redesign, the better way to format the question is Does appealing professors affect in students evaluation?
as this will require to randomly assign students to a. appealing profs
, b. unappealing profs
.
score
. Is the distribution skewed? What does that tell you about how students rate courses? Is this what you expected to see? Why, or why not?hist(evals$score)
summary(evals$score)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.300 3.800 4.300 4.175 4.600 5.000
The evaluation scores appear to be left skewed. We can see that most students rated average 4.17473 and mostly median 4.3. The skewness seems to be drawn from minority and it appears that perhaps the ratings might not be any of help.
score
, select two other variables and describe their relationship using an appropriate visualization (scatterplot, side-by-side boxplots, or mosaic plot).library(ggplot2)
ggplot(evals, aes(as.factor(bty_m1upper), cls_perc_eval)) +
geom_boxplot() +
labs( x = "beauty rating of professor from upper level male: (1) lowest - (10) highest",
y = "percent of students in class who completed evaluation.",
title = "male prof beauty rating ~ percent of students who completed evaluation")
From the boxplot above, we notice outliers in percent of students in evaluation completion thus wide range.
mosaicplot( ~ bty_m1upper + cls_perc_eval, evals, color = TRUE)
The mosic plot let us identify the observations especially the percentage of evaluation completion according to beauty rating.
The fundamental phenomenon suggested by the study is that better looking teachers are evaluated more favorably. Let’s create a scatterplot to see if this appears to be the case:
plot(evals$score ~ evals$bty_avg)
Before we draw conclusions about the trend, compare the number of observations in the data frame with the approximate number of points on the scatterplot. Is anything awry?
jitter()
on the \(y\)- or the \(x\)-coordinate. (Use ?jitter
to learn more.) What was misleading about the initial scatterplot?ggplot(evals, aes(bty_avg, score)) +
geom_jitter()
The origianl scatter plot was plotting only one point of score mean of the points that were near to each other which provided false interpretation as it was missing many hidden points as we can see now above.
m_bty
to predict average professor score by average beauty rating and add the line to your plot using abline(m_bty)
. Write out the equation for the linear model and interpret the slope. Is average beauty score a statistically significant predictor? Does it appear to be a practically significant predictor?m_bty <- lm(evals$score ~ evals$bty_avg)
summary(m_bty)
##
## Call:
## lm(formula = evals$score ~ evals$bty_avg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9246 -0.3690 0.1420 0.3977 0.9309
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.88034 0.07614 50.96 < 2e-16 ***
## evals$bty_avg 0.06664 0.01629 4.09 5.08e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared: 0.03502, Adjusted R-squared: 0.03293
## F-statistic: 16.73 on 1 and 461 DF, p-value: 5.083e-05
ggplot(evals, aes(bty_avg, score)) +
geom_jitter() +
geom_smooth(method = 'lm')
\[\hat{score} = 3.88034 + 0.0666 * beauty\_average\_rating\]
Average beauty score is a statistically significant predictor of evaluation score with p-value close to 0. It does not appear to be practically significant predictor, as for every 1 point increase in bty_avg
, the model predicts an increase of 0.0666. This is not a very significant change in evaluation score.
ggplot(evals) +
geom_point(aes(bty_avg, m_bty$residuals)) +
geom_hline(yintercept=0, color='blue')
par(mfrow = c(2,2))
plot(m_bty)
hist(m_bty$residuals)
To evaluate whether the conditions of regression are reasonable, we need to assess the followings.
The data set contains several variables on the beauty score of the professor: individual ratings from each of the six students who were asked to score the physical appearance of the professors and the average of these six scores. Let’s take a look at the relationship between one of these scores and the average beauty score.
plot(evals$bty_avg ~ evals$bty_f1lower)
cor(evals$bty_avg, evals$bty_f1lower)
As expected the relationship is quite strong - after all, the average score is calculated using the individual scores. We can actually take a look at the relationships between all beauty variables (columns 13 through 19) using the following command:
plot(evals[,13:19])
These variables are collinear (correlated), and adding more than one of these variables to the model would not add much value to the model. In this application and with these highly-correlated predictors, it is reasonable to use the average beauty score as the single representative of these variables.
In order to see if beauty is still a significant predictor of professor score after we’ve accounted for the gender of the professor, we can add the gender term into the model.
m_bty_gen <- lm(score ~ bty_avg + gender, data = evals)
summary(m_bty_gen)
m_bty_gen <- lm(score ~ bty_avg + gender, data = evals)
ggplot(evals) +
geom_point(aes(bty_avg, m_bty_gen$residuals)) +
geom_hline(yintercept=0, color='blue')
par(mfrow=c(2,2))
plot(m_bty_gen)
hist(m_bty_gen$residuals)
bty_avg
still a significant predictor of score
? Has the addition of gender
to the model changed the parameter estimate for bty_avg
?Yes, bty_avg
is still a significant predictor of score
. (p-value < 0.05) The addition of gender
to the model changed the estimate from 0.0666 to 0.0741
Note that the estimate for gender
is now called gendermale
. You’ll see this name change whenever you introduce a categorical variable. The reason is that R recodes gender
from having the values of female
and male
to being an indicator variable called gendermale
that takes a value of \(0\) for females and a value of \(1\) for males. (Such variables are often referred to as “dummy” variables.)
As a result, for females, the parameter estimate is multiplied by zero, leaving the intercept and slope form familiar from simple regression.
\[ \begin{aligned} \widehat{score} &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg + \hat{\beta}_2 \times (0) \\ &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg\end{aligned} \]
We can plot this line and the line corresponding to males with the following custom function.
multiLines(m_bty_gen)
\[\widehat{males\_core} = 3.7473 + 0.742 * beauty\_average\_rating + 0.1724 * 1\] \[\widehat{female\_score} = 3.7473 + 0.742 * beauty\_average\_rating\]
Male score shows higher course evaluation score.
The decision to call the indicator variable gendermale
instead ofgenderfemale
has no deeper meaning. R simply codes the category that comes first alphabetically as a \(0\). (You can change the reference level of a categorical variable, which is the level that is coded as a 0, using therelevel
function. Use ?relevel
to learn more.)
m_bty_rank
with gender
removed and rank
added in. How does R appear to handle categorical variables that have more than two levels? Note that the rank variable has three levels: teaching
, tenure track
, tenured
.m_bty_rank <- lm(score ~ bty_avg + rank, data = evals)
summary(m_bty_rank)
##
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8713 -0.3642 0.1489 0.4103 0.9525
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.98155 0.09078 43.860 < 2e-16 ***
## bty_avg 0.06783 0.01655 4.098 4.92e-05 ***
## ranktenure track -0.16070 0.07395 -2.173 0.0303 *
## ranktenured -0.12623 0.06266 -2.014 0.0445 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared: 0.04652, Adjusted R-squared: 0.04029
## F-statistic: 7.465 on 3 and 459 DF, p-value: 6.88e-05
When there are more than 2 levels in categorical variables, R assigns 1 or 0 for each categorical level. e.g. If the prof is on ranktenure track
, the prof would be assinged 1 on ranktenure track
and 0 on ranktenured
and vice versa. Note that teaching
variable is dropped. If the prof is on teaching
, as he is not on ranktenure track
nor ranktenured
, he is effectively making the teaching
0 and 0.
The interpretation of the coefficients in multiple regression is slightly different from that of simple regression. The estimate for bty_avg
reflects how much higher a group of professors is expected to score if they have a beauty rating that is one point higher while holding all other variables constant. In this case, that translates into considering only professors of the same rank with bty_avg
scores that are one point apart.
We will start with a full model that predicts professor score based on rank, ethnicity, gender, language of the university where they got their degree, age, proportion of students that filled out evaluations, class size, course level, number of professors, number of credits, average beauty rating, outfit, and picture color.
I expect cls_profs
would show the highest p-value in this model because number of professors teaching sections in course has not much to do with evaluation from a student point of view.
Let’s run the model…
m_full <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_profs + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full)
It does appear that cls_profssingle
has the highest p-value at 0.77806
.
If the prof is not minority
in ethnicity, the prof is given an additional .1235 points as long as all the other variables are constant.
lm.adjusted <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(lm.adjusted)
##
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age +
## cls_perc_eval + cls_students + cls_level + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7836 -0.3257 0.0859 0.3513 0.9551
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0872523 0.2888562 14.150 < 2e-16 ***
## ranktenure track -0.1476746 0.0819824 -1.801 0.072327 .
## ranktenured -0.0973829 0.0662614 -1.470 0.142349
## ethnicitynot minority 0.1274458 0.0772887 1.649 0.099856 .
## gendermale 0.2101231 0.0516873 4.065 5.66e-05 ***
## languagenon-english -0.2282894 0.1111305 -2.054 0.040530 *
## age -0.0089992 0.0031326 -2.873 0.004262 **
## cls_perc_eval 0.0052888 0.0015317 3.453 0.000607 ***
## cls_students 0.0004687 0.0003737 1.254 0.210384
## cls_levelupper 0.0606374 0.0575010 1.055 0.292200
## cls_creditsone credit 0.5061196 0.1149163 4.404 1.33e-05 ***
## bty_avg 0.0398629 0.0174780 2.281 0.023032 *
## pic_outfitnot formal -0.1083227 0.0721711 -1.501 0.134080
## pic_colorcolor -0.2190527 0.0711469 -3.079 0.002205 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared: 0.187, Adjusted R-squared: 0.1634
## F-statistic: 7.943 on 13 and 449 DF, p-value: 2.336e-14
#ztable(lm.adjusted)
There is no significant changes in coefficients in explanatory variables, however, note that R-squared value increases as cls_profs
drops.
lm.backward <- lm(formula = score ~ rank + ethnicity + gender + language + age +
cls_perc_eval + cls_students + cls_credits +
bty_avg + pic_outfit + pic_color, data = evals)
summary(lm.backward)
##
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age +
## cls_perc_eval + cls_students + cls_credits + bty_avg + pic_outfit +
## pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7761 -0.3187 0.0875 0.3547 0.9367
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0856255 0.2888881 14.143 < 2e-16 ***
## ranktenure track -0.1420696 0.0818201 -1.736 0.083184 .
## ranktenured -0.0895940 0.0658566 -1.360 0.174372
## ethnicitynot minority 0.1424342 0.0759800 1.875 0.061491 .
## gendermale 0.2037722 0.0513416 3.969 8.40e-05 ***
## languagenon-english -0.2093185 0.1096785 -1.908 0.056966 .
## age -0.0087287 0.0031224 -2.795 0.005404 **
## cls_perc_eval 0.0053545 0.0015306 3.498 0.000515 ***
## cls_students 0.0003573 0.0003585 0.997 0.319451
## cls_creditsone credit 0.4733728 0.1106549 4.278 2.31e-05 ***
## bty_avg 0.0410340 0.0174449 2.352 0.019092 *
## pic_outfitnot formal -0.1172152 0.0716857 -1.635 0.102722
## pic_colorcolor -0.1973196 0.0681052 -2.897 0.003948 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4975 on 450 degrees of freedom
## Multiple R-squared: 0.185, Adjusted R-squared: 0.1632
## F-statistic: 8.51 on 12 and 450 DF, p-value: 1.275e-14
As of the following highest p-value shown variable was cls_level
. However, We can see that the R-squred changes to 0.1632
which is lower than the previous model. At this point, we stop using backward-selection and no more removal of coefficients.
Thus, the final regression formurla is using the previous model.
\[ \begin{aligned}\widehat{score} &= 4.0873 \\ - 0.1477 * ranktenure\_track - 0.0974 * rank\_tenured + 0.1274 * ethnicity\_not\_minority \\ + 0.2101 * gender\_male - 0.2283 * language\_non\_english - 0.0090 * age + 0.0053 * cls\_perc\_eval \\ + 0.0005 * cls\_students + 0.0606 * cls\_level\_upper + 0.5061 * cls\_credits\_one\_credit \\ + 0.0399 * bty\_avg -0.1083 * pic\_outfit\_notformal - 0.2191 * pic\_colorcolor\end{aligned} \]
summary(lm.adjusted)
##
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age +
## cls_perc_eval + cls_students + cls_level + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7836 -0.3257 0.0859 0.3513 0.9551
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0872523 0.2888562 14.150 < 2e-16 ***
## ranktenure track -0.1476746 0.0819824 -1.801 0.072327 .
## ranktenured -0.0973829 0.0662614 -1.470 0.142349
## ethnicitynot minority 0.1274458 0.0772887 1.649 0.099856 .
## gendermale 0.2101231 0.0516873 4.065 5.66e-05 ***
## languagenon-english -0.2282894 0.1111305 -2.054 0.040530 *
## age -0.0089992 0.0031326 -2.873 0.004262 **
## cls_perc_eval 0.0052888 0.0015317 3.453 0.000607 ***
## cls_students 0.0004687 0.0003737 1.254 0.210384
## cls_levelupper 0.0606374 0.0575010 1.055 0.292200
## cls_creditsone credit 0.5061196 0.1149163 4.404 1.33e-05 ***
## bty_avg 0.0398629 0.0174780 2.281 0.023032 *
## pic_outfitnot formal -0.1083227 0.0721711 -1.501 0.134080
## pic_colorcolor -0.2190527 0.0711469 -3.079 0.002205 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared: 0.187, Adjusted R-squared: 0.1634
## F-statistic: 7.943 on 13 and 449 DF, p-value: 2.336e-14
summary(lm.adjusted$residuals)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.7836 -0.3257 0.0859 0.0000 0.3513 0.9551
ggplot(evals) +
geom_point(aes(bty_avg, lm.adjusted$residuals)) +
geom_hline(yintercept=0, color='blue')
par(mfrow=c(2,2))
plot(lm.adjusted)
hist(lm.adjusted$residuals)
Data shows sligh left skew – which can be ignored thanks to the large size of sample, And there are questions remaining for the constant variability and linearity.
New information can have an impact on any of the conditions of linear regression whether that’s positive or negative.
summary(lm.adjusted)
##
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age +
## cls_perc_eval + cls_students + cls_level + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7836 -0.3257 0.0859 0.3513 0.9551
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0872523 0.2888562 14.150 < 2e-16 ***
## ranktenure track -0.1476746 0.0819824 -1.801 0.072327 .
## ranktenured -0.0973829 0.0662614 -1.470 0.142349
## ethnicitynot minority 0.1274458 0.0772887 1.649 0.099856 .
## gendermale 0.2101231 0.0516873 4.065 5.66e-05 ***
## languagenon-english -0.2282894 0.1111305 -2.054 0.040530 *
## age -0.0089992 0.0031326 -2.873 0.004262 **
## cls_perc_eval 0.0052888 0.0015317 3.453 0.000607 ***
## cls_students 0.0004687 0.0003737 1.254 0.210384
## cls_levelupper 0.0606374 0.0575010 1.055 0.292200
## cls_creditsone credit 0.5061196 0.1149163 4.404 1.33e-05 ***
## bty_avg 0.0398629 0.0174780 2.281 0.023032 *
## pic_outfitnot formal -0.1083227 0.0721711 -1.501 0.134080
## pic_colorcolor -0.2190527 0.0711469 -3.079 0.002205 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared: 0.187, Adjusted R-squared: 0.1634
## F-statistic: 7.943 on 13 and 449 DF, p-value: 2.336e-14
Based on the summary, the high-score prof characteristics would be on teaching track, white, male, english speaking, young, teaching upper level courses with one credit and physically appealing.
Since this is an observational data, I would not generalize the conclusion as correlation doesn’t mean causation.
This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported. This lab was written by Mine Çetinkaya-Rundel and Andrew Bray.