1(a): Create a network with 4 nodes that are connected to each other i.e., a complete graph with 4 nodes and the degree for all is 3.
library("network")
library(igraph)
n<-4
p.<-1
g<-erdos.renyi.game(n,p.,type = c("gnp"),directed = FALSE,loops = FALSE)
plot.igraph(g)
g
## IGRAPH 157681e U--- 4 6 -- Erdos renyi (gnp) graph
## + attr: name (g/c), type (g/c), loops (g/l), p (g/n)
## + edges from 157681e:
## [1] 1--2 1--3 1--4 2--3 2--4 3--4
Number of nodes is 4 Number of links is 6
Degree for each node in order(Node 1 ..2..3…4..n) below:
degree(g,v=V(g), mode = c("total"),loops = FALSE, normalized = FALSE)
## [1] 3 3 3 3
Add a new node (the 5th one) to this existing network such that the new node randomly attaches to 3 nodes of the existing network with probabilities that are proportional to the degrees of the nodes already in the network. Make sure that there are no multiple edges (the same node must not be linked more than once). Now, you have a 5-node network. Update the degrees of all the nodes.
g5<-barabasi.game(5, power = 1, m = 3, out.dist = NULL, out.seq = NULL,
out.pref = FALSE, zero.appeal = 1, directed = FALSE,
algorithm = c("psumtree"), start.graph = g)
plot.igraph(g5)
g5
## IGRAPH 159d372 U--- 5 9 -- Barabasi graph
## + attr: name (g/c), power (g/n), m (g/n), zero.appeal (g/n),
## | algorithm (g/c)
## + edges from 159d372:
## [1] 1--2 1--3 1--4 2--3 2--4 3--4 3--5 1--5 4--5
Number of nodes is 5 Number of links is 9
Degree for each node in order(Node 1 ..2..3…4..n) below:
degree(g5,v=V(g5), mode = c("total"),loops = FALSE, normalized = FALSE)
## [1] 4 3 4 4 3
Add the 6th node (with 3 links) in a similar fashion.
g6<-barabasi.game(6, power = 1, m = 3, out.dist = NULL, out.seq = NULL,
out.pref = FALSE, zero.appeal = 1, directed = FALSE,
algorithm = c("psumtree"), start.graph = g5)
plot.igraph(g6)
g6
## IGRAPH 1653475 U--- 6 12 -- Barabasi graph
## + attr: name (g/c), power (g/n), m (g/n), zero.appeal (g/n),
## | algorithm (g/c)
## + edges from 1653475:
## [1] 1--2 1--3 1--4 2--3 2--4 3--4 3--5 1--5 4--5 1--6 2--6 5--6
Number of nodes is 6 Number of links is 12
Degree for each node in order(Node 1 ..2..3…4..n) below:
degree(g6,v=V(g6), mode = c("total"),loops = FALSE, normalized = FALSE)
## [1] 5 4 4 4 4 3
Continue to add 5000 nodes. The final network has 5004 nodes with (6+15000) links. In the following graph, larger Nodes have a higher degree and are shown in the center.
g5004<-barabasi.game(5004, power = 1, m = 3, out.dist = NULL, out.seq = NULL,
out.pref = FALSE, zero.appeal = 1, directed = FALSE,
algorithm = c("psumtree"), start.graph = g6)
deg <- degree(g5004, mode="all")
l <- layout_with_fr(g5004)
l <- norm_coords(l, ymin=-15.3, ymax=15.3, xmin=-23, xmax=23)
par(mfrow=c(1,1), mar=c(0,0,0,0))
plot(g5004, rescale=F, layout=l*.07,vertex.label=NA,vertex.size=deg*.1,edge.width=.0000000000000000001,edge.curved=.1)
g5004
## IGRAPH 1676296 U--- 5004 15006 -- Barabasi graph
## + attr: name (g/c), power (g/n), m (g/n), zero.appeal (g/n),
## | algorithm (g/c)
## + edges from 1676296:
## [1] 1-- 2 1-- 3 1-- 4 2-- 3 2-- 4 3-- 4 3-- 5 1-- 5 4-- 5 1-- 6
## [11] 2-- 6 5-- 6 2-- 7 5-- 7 6-- 7 2-- 8 4-- 8 1-- 8 2-- 9 7-- 9
## [21] 5-- 9 5--10 2--10 7--10 3--11 6--11 2--11 2--12 6--12 10--12
## [31] 5--13 4--13 11--13 9--14 7--14 1--14 10--15 9--15 4--15 4--16
## [41] 2--16 3--16 1--17 5--17 11--17 12--18 7--18 1--18 2--19 12--19
## [51] 4--19 11--20 14--20 2--20 16--21 12--21 13--21 5--22 16--22 3--22
## [61] 5--23 10--23 2--23 4--24 12--24 5--24 21--25 23--25 3--25 10--26
## + ... omitted several edges
Number of nodes is 5004 Number of links is 15006
Degree for each node in order(Node 1 ..2..3…4..n) below:
degree(g5004,v=V(g5004), mode = c("total"),loops = FALSE, normalized = FALSE)
## [1] 130 137 89 109 150 48 117 67 73 63 61 54 65 41 56 24 56
## [18] 48 51 12 25 39 100 28 24 24 24 27 32 22 25 5 62 36
## [35] 17 26 37 11 20 34 18 34 32 20 51 14 35 17 36 42 25
## [52] 31 32 7 25 32 33 21 18 25 13 23 24 48 14 24 56 37
## [69] 56 37 29 9 25 17 13 27 5 44 43 56 25 31 37 25 10
## [86] 22 22 14 17 21 7 23 57 24 20 35 19 10 29 31 26 19
## [103] 9 13 19 16 16 9 15 30 21 5 17 7 11 18 16 28 37
## [120] 13 20 12 17 12 16 13 24 21 10 15 12 11 13 26 14 15
## [137] 15 23 28 20 25 8 20 17 8 13 22 21 11 16 9 25 10
## [154] 21 26 27 14 9 7 35 7 24 6 7 12 9 5 6 7 16
## [171] 17 17 24 26 16 16 28 17 15 5 16 24 8 16 15 12 16
## [188] 20 33 19 15 11 9 11 6 25 13 18 18 17 25 8 10 5
## [205] 17 12 10 24 12 21 18 13 12 10 6 19 17 15 18 11 6
## [222] 8 7 6 22 7 21 20 25 10 12 16 15 7 23 6 23 8
## [239] 21 14 18 5 18 10 7 15 10 5 12 31 14 48 6 22 8
## [256] 7 14 6 3 7 18 13 9 18 15 10 10 6 18 8 11 16
## [273] 8 15 15 12 22 17 9 7 7 15 8 11 17 21 21 26 25
## [290] 23 8 8 7 9 6 7 27 15 12 20 8 13 14 9 9 11
## [307] 4 4 16 7 26 12 7 14 17 4 8 17 13 10 11 19 7
## [324] 16 18 16 6 23 7 8 7 13 6 6 13 13 4 13 16 10
## [341] 10 10 6 10 8 12 7 9 12 27 12 13 12 10 9 8 18
## [358] 9 10 12 5 14 15 8 10 10 6 9 6 7 4 7 11 13
## [375] 7 12 12 9 4 10 16 7 8 7 17 21 15 13 12 7 20
## [392] 13 12 6 12 12 13 5 12 10 11 11 12 4 3 5 5 6
## [409] 8 8 12 10 22 7 12 9 12 11 13 17 8 15 8 8 15
## [426] 7 9 8 16 10 13 9 19 8 11 16 23 15 10 11 6 14
## [443] 6 8 9 7 12 15 9 13 5 8 11 18 12 6 11 9 7
## [460] 7 12 16 14 10 7 8 11 12 11 8 12 7 7 11 12 9
## [477] 12 8 8 11 28 8 7 12 5 13 10 12 18 11 8 10 9
## [494] 14 12 6 13 5 7 3 5 10 8 10 7 12 15 10 19 13
## [511] 10 10 5 15 16 6 11 5 8 5 14 3 12 16 13 10 10
## [528] 6 8 10 13 11 4 14 6 16 6 6 4 5 12 12 11 9
## [545] 17 5 8 6 5 8 9 9 5 8 12 15 8 7 4 12 10
## [562] 7 6 13 7 7 7 6 7 9 11 5 7 7 15 12 15 7
## [579] 7 7 11 6 9 10 9 8 9 13 5 7 5 17 9 12 12
## [596] 11 10 8 9 8 10 9 6 10 7 8 5 7 10 11 9 10
## [613] 5 19 12 6 9 5 7 9 6 10 11 12 5 7 8 7 7
## [630] 9 7 9 4 8 7 9 6 11 3 10 9 13 7 9 14 8
## [647] 10 7 8 8 8 14 11 7 13 5 10 8 6 7 11 3 7
## [664] 13 3 8 5 6 10 6 22 10 10 4 6 13 8 11 4 11
## [681] 6 8 7 8 9 9 10 9 10 7 9 8 12 8 7 9 9
## [698] 7 5 6 5 11 5 9 15 6 6 9 6 6 9 7 11 9
## [715] 4 4 8 7 3 9 6 8 6 5 6 5 4 13 5 10 9
## [732] 14 7 8 9 10 4 14 7 8 3 4 6 15 4 12 5 14
## [749] 20 6 13 9 3 6 7 9 6 11 6 9 12 6 7 5 6
## [766] 12 6 13 7 12 12 3 5 5 8 15 6 5 9 4 4 5
## [783] 7 6 5 4 4 6 8 7 8 11 9 11 13 8 11 5 8
## [800] 4 10 8 6 5 14 5 12 9 8 9 7 10 12 7 6 9
## [817] 12 13 5 6 4 8 7 10 5 4 8 7 5 9 7 15 9
## [834] 10 4 11 11 7 18 3 3 11 8 13 6 6 4 14 7 4
## [851] 9 5 6 21 6 8 9 4 5 9 4 8 10 6 10 10 5
## [868] 7 6 8 8 9 6 4 4 8 12 11 8 9 6 4 5 6
## [885] 8 8 9 5 10 7 6 6 6 12 4 10 15 3 11 5 3
## [902] 6 7 4 4 6 6 8 8 3 13 4 8 13 5 11 9 8
## [919] 10 4 5 8 8 5 5 6 5 9 7 12 7 5 11 12 11
## [936] 7 8 6 7 8 8 4 6 6 6 5 5 8 8 5 8 6
## [953] 6 5 7 6 4 4 13 5 6 4 6 3 4 7 13 11 7
## [970] 6 7 9 6 6 6 4 7 7 10 8 8 4 4 10 9 7
## [987] 6 8 7 6 5 3 3 6 7 6 12 10 11 8 8 11 6
## [1004] 7 6 6 6 8 6 8 5 13 10 3 8 5 9 4 10 8
## [1021] 11 3 6 8 12 4 5 5 12 6 3 8 8 6 4 10 11
## [1038] 8 5 6 9 6 7 6 8 6 11 10 6 3 7 8 11 5
## [1055] 6 7 12 5 10 8 5 3 6 8 7 10 7 6 3 7 6
## [1072] 8 6 6 4 11 10 3 7 7 6 8 6 8 7 9 10 7
## [1089] 9 6 10 4 3 5 10 6 4 10 6 6 10 4 6 9 6
## [1106] 4 6 3 9 5 7 10 5 6 12 3 5 4 6 6 14 7
## [1123] 6 12 3 10 6 7 4 5 8 11 7 8 4 4 7 5 5
## [1140] 7 5 11 7 7 6 5 5 4 6 9 9 6 10 8 4 8
## [1157] 6 9 10 7 5 8 6 5 7 12 3 8 5 5 15 3 10
## [1174] 3 5 11 7 10 8 8 6 3 10 6 5 4 6 8 13 5
## [1191] 5 5 3 5 3 6 12 5 3 4 3 5 7 9 9 7 4
## [1208] 8 6 3 7 7 7 5 11 3 6 6 6 14 8 5 4 3
## [1225] 4 6 5 6 5 5 7 4 7 7 7 5 6 8 6 3 5
## [1242] 5 5 5 8 3 4 4 9 6 5 8 6 8 4 9 10 5
## [1259] 5 4 6 5 7 9 6 8 5 5 9 4 9 5 5 3 6
## [1276] 5 4 10 7 5 5 7 7 5 8 4 5 10 5 6 3 6
## [1293] 5 6 8 4 6 9 4 4 4 8 7 5 7 7 8 4 7
## [1310] 7 7 3 8 10 5 4 4 5 8 4 4 4 5 4 5 7
## [1327] 6 4 4 4 4 7 9 7 7 6 3 7 4 9 11 8 4
## [1344] 9 5 8 4 4 5 4 7 5 7 6 6 6 4 3 7 9
## [1361] 6 4 4 12 4 7 5 9 6 4 6 11 6 6 4 6 4
## [1378] 5 12 5 8 3 5 3 4 4 4 5 6 6 4 4 6 6
## [1395] 4 5 6 8 8 10 5 3 5 10 8 5 7 3 8 5 9
## [1412] 4 3 5 3 4 8 9 8 5 4 5 9 10 5 5 6 5
## [1429] 3 12 6 3 3 6 7 6 5 14 9 7 4 11 5 3 6
## [1446] 7 8 5 7 6 5 5 4 4 6 8 6 6 4 9 4 4
## [1463] 18 4 6 7 6 7 7 7 8 7 3 4 5 5 6 5 5
## [1480] 5 6 6 4 6 4 6 3 12 5 5 9 5 6 3 7 6
## [1497] 7 7 8 3 3 4 4 13 6 9 6 9 5 4 3 4 3
## [1514] 5 3 11 4 9 4 4 5 6 3 11 5 5 6 7 3 4
## [1531] 4 5 8 5 9 5 6 4 6 5 7 5 8 7 5 7 3
## [1548] 5 4 4 8 11 6 5 4 5 4 8 4 5 4 3 7 4
## [1565] 3 5 7 4 5 4 5 6 4 9 4 3 6 6 8 8 3
## [1582] 5 8 3 6 3 5 9 4 8 8 5 6 5 3 7 4 4
## [1599] 5 6 6 5 5 8 8 5 3 4 7 10 10 6 5 9 6
## [1616] 3 6 9 8 5 5 4 5 6 8 5 6 7 5 3 4 6
## [1633] 6 6 3 4 9 4 7 3 6 6 7 4 6 3 4 7 4
## [1650] 5 6 8 6 5 4 7 3 5 9 7 7 5 4 4 4 5
## [1667] 5 5 4 6 4 4 3 10 7 3 6 6 6 3 6 4 6
## [1684] 4 6 7 5 4 5 4 8 6 5 3 5 4 7 3 3 9
## [1701] 6 3 3 6 6 4 5 7 4 4 5 4 5 5 3 6 5
## [1718] 5 5 5 10 6 5 7 4 6 3 5 3 10 4 7 5 7
## [1735] 3 5 4 4 5 4 6 4 6 7 5 9 6 10 7 3 3
## [1752] 7 7 4 4 5 5 6 5 3 6 4 5 5 3 6 7 3
## [1769] 5 6 3 3 10 6 6 4 8 5 6 3 4 4 3 4 7
## [1786] 6 7 6 8 4 4 3 6 9 3 4 5 4 4 4 6 8
## [1803] 5 7 5 5 3 4 6 4 6 5 4 6 3 4 6 4 4
## [1820] 3 8 4 5 4 4 5 4 4 5 5 4 4 6 6 7 4
## [1837] 5 6 5 4 4 4 5 6 8 5 8 9 4 3 4 4 4
## [1854] 5 4 3 3 4 4 6 5 5 5 5 4 5 8 5 6 5
## [1871] 3 7 4 6 4 3 7 6 8 4 6 3 5 5 3 4 5
## [1888] 4 6 9 3 5 3 4 5 5 3 3 7 7 6 4 5 3
## [1905] 4 7 4 6 4 4 8 5 5 3 3 6 5 3 7 4 6
## [1922] 11 8 3 3 4 7 5 3 6 8 6 7 6 5 8 4 4
## [1939] 3 6 4 4 4 6 10 3 3 3 5 3 4 5 6 7 4
## [1956] 3 9 6 9 10 4 6 3 7 5 6 3 4 4 5 4 5
## [1973] 7 5 6 7 6 5 5 5 6 7 5 8 4 3 5 8 4
## [1990] 3 5 5 7 4 4 3 5 5 5 4 4 6 3 5 9 4
## [2007] 7 6 6 5 3 3 5 7 3 3 4 4 5 6 6 6 3
## [2024] 3 3 7 9 3 3 4 5 7 5 5 6 3 4 4 4 4
## [2041] 4 5 4 4 5 3 3 5 3 7 5 5 4 7 3 9 5
## [2058] 5 6 3 3 3 3 8 4 5 6 3 4 3 8 8 4 4
## [2075] 5 3 4 4 5 7 5 6 4 4 5 6 7 11 6 3 8
## [2092] 5 4 4 4 6 3 3 6 4 5 4 10 4 4 5 3 4
## [2109] 9 8 4 6 5 3 3 4 4 3 3 6 4 4 3 7 5
## [2126] 3 3 5 5 6 7 3 3 5 3 5 9 8 3 5 6 7
## [2143] 4 4 5 4 5 6 6 4 6 3 5 7 6 7 5 3 3
## [2160] 3 6 13 6 7 4 5 9 3 10 3 4 7 6 4 7 3
## [2177] 4 5 5 7 3 6 4 3 4 6 3 5 3 12 6 4 5
## [2194] 4 4 4 5 6 4 4 4 4 3 4 5 3 4 3 5 3
## [2211] 4 5 5 6 6 3 5 4 4 4 4 4 4 3 3 6 3
## [2228] 4 6 5 3 3 3 5 3 3 3 5 3 4 6 6 9 6
## [2245] 3 3 6 3 6 7 7 3 5 6 6 4 6 5 4 6 6
## [2262] 3 4 4 4 4 5 3 8 3 5 5 3 4 4 3 3 5
## [2279] 10 4 3 8 4 4 4 3 8 3 5 6 4 6 4 4 10
## [2296] 3 4 3 4 4 6 3 3 4 6 3 5 5 4 8 5 4
## [2313] 7 3 3 7 6 3 4 6 3 6 3 3 11 6 8 5 4
## [2330] 4 5 5 6 4 6 6 5 3 5 5 3 5 5 4 3 4
## [2347] 7 7 3 6 3 6 4 3 3 3 7 6 4 4 3 6 5
## [2364] 4 4 4 3 4 6 4 3 6 3 4 7 5 7 5 3 3
## [2381] 4 6 4 7 7 5 4 5 4 5 3 4 4 6 3 3 6
## [2398] 3 4 3 4 5 3 3 4 9 4 3 4 5 3 6 4 6
## [2415] 4 4 4 6 4 7 3 8 6 4 6 4 5 4 3 3 6
## [2432] 4 5 4 8 3 6 4 4 4 4 4 7 8 5 7 3 3
## [2449] 4 3 3 8 3 4 5 4 3 5 4 6 5 5 3 6 4
## [2466] 5 3 3 3 5 4 5 5 4 3 3 5 4 6 6 3 7
## [2483] 4 3 6 5 4 5 5 5 3 4 3 3 4 7 3 4 7
## [2500] 6 6 5 8 4 5 3 5 4 7 4 4 4 3 4 3 3
## [2517] 3 5 3 7 3 5 3 6 5 4 6 4 4 5 4 6 4
## [2534] 3 8 3 4 5 3 6 3 3 5 6 3 8 4 4 3 4
## [2551] 4 5 6 6 3 8 4 6 3 3 7 3 3 6 4 4 4
## [2568] 5 4 3 4 3 5 5 5 5 3 3 3 3 3 5 4 5
## [2585] 4 4 5 6 4 5 7 3 4 6 3 3 3 4 4 4 6
## [2602] 6 3 4 3 3 4 6 4 7 3 5 3 4 5 5 4 6
## [2619] 5 4 4 5 4 4 4 4 9 3 5 5 5 3 3 3 3
## [2636] 4 3 4 4 3 4 3 3 5 3 5 4 4 5 4 5 6
## [2653] 3 3 3 6 4 3 5 5 4 3 4 4 4 3 5 3 3
## [2670] 4 4 3 4 3 4 4 3 5 4 3 3 4 4 3 3 4
## [2687] 3 4 5 6 4 4 3 4 3 3 4 4 4 5 6 8 3
## [2704] 3 3 4 5 4 3 4 5 3 4 4 3 3 3 3 4 5
## [2721] 3 5 3 6 6 5 3 6 3 3 4 4 3 6 6 4 4
## [2738] 4 3 4 3 6 5 4 3 5 4 3 5 3 3 3 4 3
## [2755] 5 4 6 4 3 4 4 3 5 3 4 4 6 6 3 3 3
## [2772] 3 4 4 3 3 5 4 5 5 6 4 4 5 4 4 4 4
## [2789] 4 5 5 5 4 5 5 3 3 3 4 3 5 4 4 4 3
## [2806] 3 7 3 3 4 6 3 4 4 4 3 6 5 3 8 7 4
## [2823] 3 4 3 4 4 3 4 3 3 5 4 3 6 3 5 5 5
## [2840] 4 3 5 5 5 4 3 3 3 3 3 3 5 4 3 5 3
## [2857] 3 3 3 3 3 4 3 5 3 4 4 6 4 4 3 3 3
## [2874] 5 4 3 6 4 4 4 4 3 4 4 5 4 4 3 4 3
## [2891] 7 4 3 4 4 5 5 4 3 3 3 3 3 5 3 3 4
## [2908] 5 4 3 3 4 5 6 3 3 4 7 3 3 3 5 3 5
## [2925] 3 3 3 3 4 3 3 6 6 3 12 5 4 3 4 3 3
## [2942] 4 4 3 4 6 3 3 3 6 6 4 3 4 4 3 3 3
## [2959] 5 5 4 3 3 3 4 6 5 3 3 3 4 5 4 9 5
## [2976] 3 4 7 4 6 4 3 3 6 6 5 3 3 3 4 4 4
## [2993] 4 3 6 5 4 4 4 3 3 4 5 4 4 3 4 5 3
## [3010] 3 4 3 3 4 4 3 3 3 3 5 5 3 5 4 3 4
## [3027] 4 4 4 3 3 6 3 4 5 4 3 4 4 4 4 3 5
## [3044] 4 7 5 3 6 4 4 5 3 3 4 3 4 3 3 4 3
## [3061] 3 3 4 3 3 4 3 4 3 6 3 10 5 6 3 4 5
## [3078] 4 4 4 5 4 4 3 4 3 4 5 4 3 6 4 3 4
## [3095] 5 3 3 4 4 6 6 6 5 4 3 3 4 4 4 4 4
## [3112] 3 3 5 3 3 5 4 3 3 4 3 5 3 3 3 3 3
## [3129] 4 8 3 4 4 4 6 4 6 6 4 5 4 8 3 5 3
## [3146] 3 3 3 5 3 3 4 4 4 5 8 3 4 4 6 4 7
## [3163] 4 5 5 5 3 3 4 3 4 5 4 3 3 3 6 3 3
## [3180] 5 4 3 4 4 3 4 3 3 4 3 5 5 3 4 3 4
## [3197] 5 3 3 3 3 5 6 3 3 5 4 3 3 3 6 4 5
## [3214] 3 3 3 3 3 4 4 5 3 4 4 4 5 5 3 4 5
## [3231] 5 5 5 4 3 4 4 4 4 4 3 3 3 3 6 4 6
## [3248] 3 6 3 6 4 3 3 4 3 4 3 3 3 4 5 3 7
## [3265] 3 3 3 4 3 3 4 3 3 4 4 3 3 4 5 3 3
## [3282] 4 4 4 3 3 3 5 3 5 3 7 3 4 3 3 3 4
## [3299] 3 4 4 8 3 3 3 4 3 3 3 3 3 3 5 3 3
## [3316] 4 3 5 3 3 3 3 4 3 3 4 4 3 3 3 3 3
## [3333] 3 3 5 4 4 4 5 4 4 3 6 3 5 4 3 3 3
## [3350] 3 7 3 3 3 3 4 3 3 4 3 6 3 3 5 3 5
## [3367] 3 3 4 3 4 4 3 3 3 4 3 3 4 4 3 3 4
## [3384] 4 4 4 3 3 4 4 3 7 3 4 6 3 4 4 5 3
## [3401] 3 4 4 4 5 3 5 3 4 3 4 5 3 3 3 3 3
## [3418] 3 6 4 3 4 3 3 3 4 3 3 3 3 4 5 3 3
## [3435] 4 4 5 3 7 3 4 3 3 3 3 3 6 4 5 6 4
## [3452] 3 3 4 3 4 3 3 4 4 6 3 4 4 4 5 4 4
## [3469] 3 3 6 3 4 4 3 4 3 4 3 5 3 5 4 4 4
## [3486] 3 4 3 3 4 3 5 5 5 4 6 3 5 3 3 5 3
## [3503] 3 3 3 4 3 4 3 5 4 3 4 4 3 3 3 3 4
## [3520] 4 3 4 3 4 6 4 3 4 3 4 3 4 6 4 3 4
## [3537] 4 3 3 5 3 4 3 3 6 3 3 4 3 3 3 3 4
## [3554] 3 5 6 3 3 3 3 3 3 4 5 4 3 4 3 3 4
## [3571] 3 4 4 3 3 4 3 3 3 3 5 4 3 4 4 4 3
## [3588] 4 3 4 4 3 4 3 3 3 3 5 6 3 4 5 3 3
## [3605] 3 6 5 4 5 4 3 4 3 5 3 3 3 3 5 4 4
## [3622] 4 3 3 4 3 4 3 5 4 3 4 3 4 3 3 3 3
## [3639] 4 7 4 3 3 3 4 5 5 3 3 3 3 4 5 5 3
## [3656] 3 3 4 3 4 5 3 3 3 3 4 3 5 3 3 3 4
## [3673] 4 3 3 3 5 4 3 4 3 3 4 3 3 3 3 3 3
## [3690] 6 3 3 3 4 4 3 3 4 3 3 3 3 3 3 3 3
## [3707] 4 3 3 4 4 3 3 4 4 4 3 3 4 3 4 3 3
## [3724] 3 3 5 3 3 3 3 3 3 3 3 4 3 6 3 3 3
## [3741] 3 3 3 5 3 5 3 4 4 3 3 3 4 3 3 3 3
## [3758] 3 3 3 4 4 3 4 4 3 3 3 3 4 3 3 4 3
## [3775] 4 3 5 3 3 4 3 3 4 3 3 4 3 3 3 3 3
## [3792] 5 3 3 6 3 3 4 3 4 3 3 3 4 3 3 4 3
## [3809] 3 3 3 3 3 3 3 3 3 3 3 4 4 5 5 3 3
## [3826] 3 3 3 3 5 3 3 3 3 4 5 3 3 3 3 3 3
## [3843] 5 4 4 5 3 5 4 3 3 6 4 3 4 3 3 3 4
## [3860] 5 3 3 3 3 3 3 5 3 3 4 3 3 3 4 3 3
## [3877] 4 3 3 3 5 3 3 4 3 3 4 4 3 5 4 3 7
## [3894] 5 4 3 4 3 3 4 3 3 4 3 3 3 3 3 3 3
## [3911] 5 3 5 7 3 4 3 4 4 3 4 4 4 3 5 3 3
## [3928] 3 5 3 3 3 3 3 6 4 3 3 3 4 3 3 3 3
## [3945] 3 3 3 3 3 3 4 3 3 3 3 3 4 4 4 3 3
## [3962] 3 3 4 3 3 3 4 3 4 3 3 3 5 4 3 4 3
## [3979] 4 3 3 3 3 3 3 3 4 4 7 3 3 4 3 3 3
## [3996] 4 3 3 3 3 3 4 3 3 3 3 3 3 3 3 4 3
## [4013] 3 4 3 3 3 3 3 5 3 4 4 3 3 3 3 4 3
## [4030] 3 3 5 3 4 4 4 3 3 4 3 4 3 3 3 3 3
## [4047] 3 3 3 3 4 3 4 3 4 3 3 4 3 3 3 3 3
## [4064] 3 4 5 3 3 3 3 3 3 3 3 3 4 3 3 3 3
## [4081] 3 3 3 3 4 3 3 3 3 5 4 4 3 3 3 3 3
## [4098] 3 3 3 3 4 3 3 3 3 4 3 4 3 3 3 4 3
## [4115] 3 3 3 5 4 3 4 3 3 4 3 3 3 4 6 3 3
## [4132] 3 4 4 3 3 4 3 3 3 3 5 3 3 3 3 3 3
## [4149] 4 3 3 4 4 3 4 3 3 3 3 3 3 3 5 3 3
## [4166] 3 3 3 3 4 3 3 3 3 3 3 3 3 3 4 3 4
## [4183] 3 4 4 4 3 4 3 4 3 3 4 6 3 3 3 3 3
## [4200] 3 4 5 3 3 3 3 3 3 4 3 4 3 3 4 4 3
## [4217] 3 4 4 3 3 3 3 3 3 3 4 3 3 3 3 4 3
## [4234] 3 3 4 3 4 3 3 3 3 3 3 3 3 4 3 3 4
## [4251] 3 4 3 4 3 3 3 3 3 3 4 3 3 3 3 4 4
## [4268] 3 3 3 5 4 3 3 3 3 4 3 4 3 3 3 3 3
## [4285] 3 3 3 4 3 3 3 3 3 4 3 3 4 3 3 3 3
## [4302] 3 3 3 3 5 4 3 5 3 5 4 3 4 3 3 4 5
## [4319] 3 4 3 4 4 3 3 3 3 3 4 3 3 3 4 3 3
## [4336] 4 3 4 3 3 3 3 4 3 3 3 3 3 3 4 3 4
## [4353] 3 4 3 3 3 3 4 3 3 3 3 3 3 3 4 3 3
## [4370] 3 3 3 5 4 4 3 4 3 4 4 4 3 3 3 3 3
## [4387] 3 3 3 3 4 3 3 3 3 3 3 4 3 3 3 3 3
## [4404] 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 4
## [4421] 3 3 3 4 3 3 3 3 3 4 3 3 4 3 4 5 3
## [4438] 3 3 3 3 3 3 3 3 3 3 3 4 3 4 3 3 4
## [4455] 3 3 4 3 3 3 3 3 4 3 3 3 3 4 3 3 3
## [4472] 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4489] 3 6 4 3 3 3 3 3 3 3 3 3 3 3 3 4 3
## [4506] 3 3 3 3 3 3 3 3 3 4 3 4 3 4 3 3 3
## [4523] 3 3 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3
## [4540] 3 3 3 3 3 3 3 3 3 3 3 5 3 3 4 3 3
## [4557] 3 3 3 4 3 4 3 3 3 3 3 3 3 3 4 3 3
## [4574] 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3
## [4591] 3 3 3 3 3 3 4 3 3 3 3 4 3 3 3 3 3
## [4608] 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 4
## [4625] 3 3 4 3 3 4 3 3 3 3 3 3 3 3 3 3 3
## [4642] 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3
## [4659] 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3
## [4676] 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4693] 3 3 3 3 3 3 4 3 3 3 3 3 4 3 3 3 3
## [4710] 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3
## [4727] 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3
## [4744] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4761] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4778] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4795] 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 4 3
## [4812] 3 3 4 3 4 3 3 3 3 3 3 3 3 3 3 4 3
## [4829] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3
## [4846] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3
## [4863] 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 4
## [4880] 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 4
## [4897] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4914] 3 3 4 3 3 4 3 3 3 3 3 3 3 3 3 3 3
## [4931] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4948] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4965] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4982] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [4999] 3 3 3 3 3 3
Find and plot the degree distribution in i) linear scale
plot((degree.distribution(g5004,cumulative = FALSE,loops=FALSE,normalized=FALSE,mode=c("total"))),main = "Degree Distribution for 5004 Nodes",xlab = "Degrees",ylab = "Fractions")
and ii) log-log scale.
plot((degree.distribution(g5004,cumulative = FALSE,loops=FALSE,normalized=FALSE,mode=c("total"))),main = "Degree Distribution for 5004 Nodes Log/Log",xlab = "Degrees",ylab = "Fractions",log = "xy")
1(b): Repeat 1(a) but instead of always adding 3 links for each new node, add either 1, 2, or 3 links with equal probability. That is, the new node links to 1 node with probability 1/3, links to 2 nodes with probability 1/3, and to 3 nodes with probability 1/3. How many links does the final network have? Plot the degree distribution using i) linear scale and ii) log-log scale. 1(a): Create a network with 4 nodes that are connected to each other i.e., a complete graph with 4 nodes and the degree for all is 3.
n<-4
p.<-1
g<-erdos.renyi.game(n,p.,type = c("gnp"),directed = FALSE,loops = FALSE)
plot.igraph(g)
g
## IGRAPH 1bc296e U--- 4 6 -- Erdos renyi (gnp) graph
## + attr: name (g/c), type (g/c), loops (g/l), p (g/n)
## + edges from 1bc296e:
## [1] 1--2 1--3 1--4 2--3 2--4 3--4
Number of nodes is 4 Number of links is 6
Degree for each node in order(Node 1 ..2..3…4..n) below:
degree(g,v=V(g), mode = c("total"),loops = FALSE, normalized = FALSE)
## [1] 3 3 3 3
Adding a new node (the 5th one) to this existing network.
v<-c(0,.333,.333,.333)
g5<-barabasi.game(5, power = 1, m = NULL, out.dist = v, out.seq = NULL,
out.pref = FALSE, zero.appeal = 1, directed = FALSE,
algorithm = c("psumtree"), start.graph = g)
plot.igraph(g5)
g5
## IGRAPH 1bdd5be U--- 5 7 -- Barabasi graph
## + attr: name (g/c), power (g/n), m (g/x), zero.appeal (g/n),
## | algorithm (g/c)
## + edges from 1bdd5be:
## [1] 1--2 1--3 1--4 2--3 2--4 3--4 2--5
Number of nodes is 5 Number of links is 7
Degree for each node in order(Node 1 ..2..3…4..n) below:
degree(g5,v=V(g5), mode = c("total"),loops = FALSE, normalized = FALSE)
## [1] 3 4 3 3 1
Add the 6th node in a similar fashion.
g6<-barabasi.game(6, power = 1, m = NULL, out.dist = v, out.seq = NULL,
out.pref = FALSE, zero.appeal = 1, directed = FALSE,
algorithm = c("psumtree"), start.graph = g5)
plot.igraph(g6)
g6
## IGRAPH 1bf75e2 U--- 6 10 -- Barabasi graph
## + attr: name (g/c), power (g/n), m (g/x), zero.appeal (g/n),
## | algorithm (g/c)
## + edges from 1bf75e2:
## [1] 1--2 1--3 1--4 2--3 2--4 3--4 2--5 3--6 2--6 5--6
Number of nodes is 6 Number of links is 8
Degree for each node in order(Node 1 ..2..3…4..n) below:
degree(g6,v=V(g6), mode = c("total"),loops = FALSE, normalized = FALSE)
## [1] 3 5 4 3 2 3
Continue to add 5000 nodes.
In the following graph, larger Nodes have a higher degree and are shown in the center. You can also notice nodes with single links on the outskirts of the graph since we are adding a choice of links of 1,2, or 3 when a node enters.
g5004<-barabasi.game(5004, power = 1, m = NULL, out.dist = v, out.seq = NULL,
out.pref = FALSE, zero.appeal = 1, directed = FALSE,
algorithm = c("psumtree"), start.graph = g6)
deg <- degree(g5004, mode="all")
l <- layout_with_fr(g5004)
l <- norm_coords(l, ymin=-15.3, ymax=15.3, xmin=-23, xmax=23)
par(mfrow=c(1,1), mar=c(0,0,0,0))
plot(g5004, rescale=F, layout=l*.07,vertex.label=NA,vertex.size=deg*.1,edge.width=.0000000000000000001,edge.curved=.1)
g5004
## IGRAPH 1c109cb U--- 5004 10042 -- Barabasi graph
## + attr: name (g/c), power (g/n), m (g/x), zero.appeal (g/n),
## | algorithm (g/c)
## + edges from 1c109cb:
## [1] 1-- 2 1-- 3 1-- 4 2-- 3 2-- 4 3-- 4 2-- 5 3-- 6 2-- 6 5-- 6
## [11] 5-- 7 4-- 7 1-- 8 5-- 8 4-- 9 7--10 1--10 4--11 7--12 2--13
## [21] 5--13 7--14 3--14 2--15 3--16 2--16 10--16 12--17 8--18 11--18
## [31] 5--19 2--19 11--19 5--20 2--20 3--20 20--21 3--21 14--21 6--22
## [41] 15--22 3--23 21--23 6--24 23--25 20--25 1--26 2--26 2--27 20--28
## [51] 16--28 4--29 5--29 21--29 2--30 21--30 10--30 12--31 3--31 5--31
## [61] 5--32 3--33 32--33 26--34 13--34 31--34 10--35 2--35 12--35 3--36
## + ... omitted several edges
Number of nodes is 5004 Number of links is 9993
Degree for each node in order(Node 1 ..2..3…4..n) below:
degree(g5004,v=V(g5004), mode = c("total"),loops = FALSE, normalized = FALSE)
## [1] 29 108 71 72 75 52 29 7 7 41 34 31 20 14 4 18 8
## [18] 35 31 53 50 21 27 47 18 16 22 32 41 28 32 30 42 7
## [35] 25 36 21 19 12 39 2 29 16 24 4 22 20 20 28 22 17
## [52] 13 31 11 14 5 35 27 6 20 7 16 6 35 6 14 10 2
## [69] 22 14 10 11 5 30 33 9 22 30 16 45 10 10 20 9 36
## [86] 21 9 23 17 6 13 5 4 31 25 6 4 12 6 9 14 22
## [103] 32 26 8 18 17 11 15 7 3 9 26 13 17 10 10 6 2
## [120] 14 14 21 10 13 6 3 8 1 9 13 8 9 7 3 7 7
## [137] 5 6 16 9 12 13 18 10 16 28 10 2 6 17 16 7 6
## [154] 9 19 5 7 11 7 7 13 7 9 8 5 11 9 5 13 4
## [171] 4 2 13 12 4 15 17 45 19 10 10 11 8 6 23 4 4
## [188] 13 12 11 7 19 11 17 4 3 6 9 18 18 19 21 10 5
## [205] 13 8 11 11 4 8 2 7 4 5 4 7 7 16 10 14 11
## [222] 6 3 8 11 6 7 1 6 15 6 9 10 12 21 12 9 8
## [239] 9 17 8 2 10 12 10 6 13 7 6 13 13 9 17 6 2
## [256] 11 19 10 5 8 11 8 6 15 16 5 13 15 8 8 7 18
## [273] 10 12 10 5 10 1 8 14 9 10 6 11 6 4 13 13 13
## [290] 9 9 13 16 1 7 3 14 9 9 9 8 12 8 5 6 3
## [307] 3 11 4 3 1 1 6 7 17 5 6 5 5 15 2 2 14
## [324] 9 4 6 7 10 11 2 4 9 8 6 6 10 4 14 5 2
## [341] 5 4 17 4 21 6 9 8 4 6 22 4 6 11 12 18 15
## [358] 7 2 8 22 8 8 6 2 11 16 5 15 5 11 3 3 11
## [375] 3 4 5 11 2 2 5 8 3 4 6 11 5 5 8 14 1
## [392] 5 5 10 8 4 10 14 11 4 14 2 4 4 4 5 15 11
## [409] 13 14 11 3 8 4 2 10 7 2 1 11 3 11 10 10 7
## [426] 13 6 3 2 9 4 3 11 6 15 4 9 8 6 12 10 7
## [443] 12 12 6 6 9 10 7 6 6 1 9 3 3 2 5 4 9
## [460] 11 2 1 9 3 7 16 2 3 2 11 4 10 9 9 6 6
## [477] 8 6 9 5 2 2 7 5 3 2 14 17 4 2 5 1 8
## [494] 11 14 9 5 7 2 1 7 8 7 22 5 2 2 5 9 5
## [511] 7 17 2 9 2 8 4 9 1 3 1 6 4 5 9 6 6
## [528] 8 9 10 21 10 7 2 4 14 6 4 4 11 8 9 12 3
## [545] 3 2 5 6 10 9 5 5 6 3 8 2 9 4 3 5 10
## [562] 3 8 10 1 7 8 4 6 3 3 6 1 4 6 6 8 5
## [579] 1 2 4 12 9 1 11 5 2 9 3 15 4 1 2 3 7
## [596] 10 2 5 7 5 8 5 5 5 1 6 9 7 4 5 5 3
## [613] 6 1 3 9 6 2 2 6 10 4 8 7 8 4 10 7 12
## [630] 8 10 6 3 5 2 13 13 10 8 4 7 2 5 7 5 4
## [647] 3 5 6 5 1 7 10 8 3 13 1 19 6 3 8 3 13
## [664] 5 4 6 4 1 9 10 3 5 11 6 5 2 7 3 3 9
## [681] 6 6 8 16 2 8 8 10 6 3 7 1 8 9 7 21 7
## [698] 4 8 4 2 5 1 5 8 8 2 9 2 8 2 5 1 9
## [715] 3 4 5 6 6 2 3 6 5 6 11 4 2 8 8 2 6
## [732] 9 4 1 2 8 6 11 10 2 7 4 2 4 6 3 8 4
## [749] 6 2 8 11 4 4 3 6 7 8 1 12 7 2 3 2 2
## [766] 8 1 4 4 6 6 2 6 6 5 2 6 5 2 7 7 6
## [783] 3 10 6 7 4 3 3 6 4 10 11 4 1 10 8 7 8
## [800] 6 2 4 2 12 1 4 9 2 5 3 6 9 4 3 6 4
## [817] 1 7 1 6 2 7 14 7 7 7 2 7 5 3 6 3 10
## [834] 3 4 3 8 4 10 3 5 4 4 3 12 2 2 4 7 5
## [851] 6 5 3 1 5 7 7 11 3 13 4 8 7 4 5 4 4
## [868] 6 8 3 2 2 6 2 11 4 5 2 2 4 1 4 6 6
## [885] 5 1 8 7 5 3 6 5 3 12 2 5 3 3 2 7 7
## [902] 1 3 12 8 2 4 1 8 5 12 4 7 5 12 1 8 6
## [919] 4 3 2 5 1 1 3 10 7 1 9 4 5 3 5 6 5
## [936] 5 3 3 6 6 8 9 3 1 9 5 3 2 5 3 4 2
## [953] 1 4 9 5 2 11 2 9 4 9 3 9 3 2 5 3 8
## [970] 7 5 6 2 9 1 1 5 7 1 5 10 3 2 3 9 19
## [987] 1 4 2 8 1 3 1 4 8 6 8 3 4 6 4 4 5
## [1004] 4 2 6 3 5 2 5 3 4 1 2 3 3 3 6 5 2
## [1021] 4 5 2 5 4 8 2 7 1 3 5 5 2 5 6 2 2
## [1038] 2 1 1 5 5 2 5 5 10 2 4 3 4 4 3 4 3
## [1055] 2 1 2 5 8 4 2 8 8 4 3 1 2 2 5 4 2
## [1072] 3 2 3 2 3 3 3 9 3 6 6 1 4 4 4 11 1
## [1089] 8 6 9 3 3 4 6 2 4 7 3 7 2 5 1 3 3
## [1106] 4 1 2 9 3 7 3 8 4 7 3 3 8 10 4 1 2
## [1123] 3 4 12 4 2 5 4 4 5 4 3 5 5 4 8 3 9
## [1140] 4 3 12 3 6 6 2 3 6 7 4 4 4 5 1 3 2
## [1157] 1 1 1 3 3 8 3 5 10 3 1 10 5 4 2 4 8
## [1174] 12 1 4 3 3 1 5 6 5 5 5 7 4 1 4 7 2
## [1191] 3 4 5 5 3 4 2 3 2 4 4 8 8 4 5 4 6
## [1208] 1 8 7 2 4 3 2 3 13 7 3 6 5 4 4 4 1
## [1225] 2 11 3 2 3 1 4 1 5 6 10 7 4 6 4 4 1
## [1242] 3 1 10 7 3 3 6 4 5 2 8 5 1 5 2 8 7
## [1259] 4 1 3 3 6 6 5 2 8 4 6 2 2 2 1 3 1
## [1276] 7 8 3 5 5 5 3 2 3 2 2 4 4 6 4 5 3
## [1293] 3 2 9 5 1 4 1 4 11 5 11 1 6 2 3 7 8
## [1310] 1 1 7 3 8 1 6 9 5 1 3 11 2 4 6 5 4
## [1327] 6 3 3 1 3 2 4 8 1 3 9 2 2 3 2 1 6
## [1344] 4 4 4 2 5 3 4 5 6 4 2 3 2 8 5 5 3
## [1361] 8 1 4 7 3 2 2 4 8 3 2 4 6 4 2 4 1
## [1378] 3 5 5 4 2 2 2 7 2 4 2 4 2 5 3 3 5
## [1395] 2 3 6 3 6 2 1 2 6 5 1 2 3 3 6 7 4
## [1412] 6 4 4 6 7 10 2 1 2 2 1 3 3 5 2 7 7
## [1429] 2 5 3 3 12 1 6 1 2 5 7 10 4 2 5 2 3
## [1446] 3 10 5 5 1 2 3 3 2 2 1 2 1 2 5 3 4
## [1463] 4 2 2 2 5 1 2 2 2 2 3 2 2 1 5 3 2
## [1480] 1 6 5 3 2 2 1 6 5 1 2 3 2 3 1 5 6
## [1497] 5 1 1 4 12 4 3 3 8 5 2 6 4 9 5 4 5
## [1514] 1 7 2 2 4 3 4 3 2 3 1 2 3 1 3 3 2
## [1531] 3 5 1 7 4 3 7 4 2 1 1 4 5 3 5 2 4
## [1548] 1 6 5 4 4 2 4 3 1 1 4 1 1 6 8 5 5
## [1565] 1 4 6 4 3 6 7 4 5 2 10 1 4 6 4 3 4
## [1582] 5 6 5 3 3 1 9 6 3 2 1 8 2 4 5 3 8
## [1599] 5 4 1 3 6 4 6 3 3 3 2 3 5 4 3 1 3
## [1616] 2 1 5 1 6 4 7 10 3 5 7 3 3 2 8 2 6
## [1633] 3 6 2 3 4 4 5 3 4 5 2 3 2 6 3 1 3
## [1650] 5 5 11 5 2 2 1 4 2 6 3 4 3 1 4 4 3
## [1667] 3 4 2 2 3 1 1 2 4 2 3 4 3 4 4 3 3
## [1684] 1 3 8 5 4 6 4 4 4 3 5 2 2 1 8 4 5
## [1701] 4 5 3 3 7 4 1 1 2 7 5 2 2 3 8 1 2
## [1718] 8 4 7 4 3 11 1 2 5 3 4 4 4 2 3 6 4
## [1735] 1 4 4 4 3 4 5 4 2 3 5 2 4 6 4 1 7
## [1752] 4 2 7 6 1 1 6 3 4 4 6 4 4 2 1 6 3
## [1769] 4 6 4 3 8 5 4 1 5 2 2 6 1 1 1 5 1
## [1786] 5 1 3 4 4 1 3 5 3 8 5 3 4 1 2 5 6
## [1803] 2 4 8 3 2 3 3 1 1 2 4 3 4 1 10 3 4
## [1820] 4 2 6 7 3 1 6 3 4 2 3 5 3 4 1 4 2
## [1837] 7 5 3 1 5 6 2 4 4 5 2 2 9 6 5 3 5
## [1854] 3 5 1 2 3 1 1 3 4 2 5 7 4 2 1 4 2
## [1871] 3 3 2 3 4 1 3 5 3 6 5 1 4 5 3 3 3
## [1888] 5 3 4 3 4 3 3 2 5 7 3 3 2 3 2 2 5
## [1905] 3 5 5 3 1 5 3 6 3 5 3 6 4 3 2 1 3
## [1922] 2 2 3 6 5 4 2 8 2 5 1 4 3 3 6 6 2
## [1939] 2 4 2 5 4 7 3 2 2 5 1 5 1 5 3 3 5
## [1956] 5 3 3 4 4 1 3 3 1 1 3 3 4 10 3 3 4
## [1973] 1 2 1 2 3 2 1 1 6 3 2 6 4 5 3 3 6
## [1990] 4 6 2 3 2 8 1 1 2 1 4 1 1 5 7 2 2
## [2007] 6 3 4 1 1 2 4 1 4 6 4 3 2 5 2 4 4
## [2024] 5 3 3 2 5 3 2 4 3 2 3 7 4 1 4 4 3
## [2041] 6 2 4 2 4 2 3 4 2 2 2 1 4 2 4 2 10
## [2058] 2 2 3 3 6 5 1 2 5 6 7 4 4 1 3 1 4
## [2075] 6 2 4 1 2 4 4 1 4 3 2 3 3 4 3 2 3
## [2092] 2 3 5 3 3 1 4 3 3 6 2 1 2 2 2 3 12
## [2109] 3 4 2 1 2 1 3 2 3 4 7 1 4 3 2 3 5
## [2126] 4 2 3 4 4 1 3 1 3 1 5 3 2 4 6 2 2
## [2143] 2 9 1 2 6 1 1 2 3 4 5 2 3 1 2 2 3
## [2160] 2 2 2 4 5 5 3 3 1 4 3 2 1 4 5 2 4
## [2177] 4 4 4 7 1 1 5 3 2 8 2 5 5 3 2 4 1
## [2194] 1 3 4 5 5 1 2 1 1 3 6 2 3 2 3 1 1
## [2211] 4 2 1 2 4 1 5 3 6 1 3 1 1 3 3 4 2
## [2228] 3 3 5 3 4 3 4 4 3 2 1 2 1 6 2 4 2
## [2245] 4 2 1 4 4 5 1 5 3 2 3 2 5 3 4 7 4
## [2262] 4 3 3 2 2 5 4 3 3 3 2 5 2 3 2 1 4
## [2279] 3 7 6 5 1 2 4 5 3 4 2 2 8 3 1 6 6
## [2296] 3 7 2 2 1 3 4 2 2 3 5 4 4 2 4 3 2
## [2313] 2 7 1 3 5 3 2 4 2 2 1 1 2 1 4 3 1
## [2330] 2 4 1 3 2 3 3 6 5 6 3 1 3 7 3 1 2
## [2347] 4 6 4 5 2 1 1 2 4 2 3 5 4 3 2 2 4
## [2364] 3 2 4 1 3 2 7 4 4 3 1 2 5 1 2 1 3
## [2381] 1 2 2 4 2 1 2 2 4 3 3 2 4 3 3 5 2
## [2398] 1 1 2 4 3 5 3 1 3 5 3 4 6 2 4 4 2
## [2415] 3 1 1 3 7 1 3 2 3 4 1 4 4 3 2 2 3
## [2432] 3 2 2 2 3 4 1 3 5 2 2 2 3 5 2 5 5
## [2449] 3 3 3 3 1 4 2 1 2 1 4 4 3 4 2 2 2
## [2466] 2 4 3 5 1 5 3 5 3 1 3 2 2 8 1 1 3
## [2483] 2 2 4 6 2 3 4 4 3 3 1 4 3 5 5 3 2
## [2500] 4 3 2 3 3 2 1 3 6 2 4 2 4 3 5 3 4
## [2517] 3 3 4 2 9 3 2 2 3 2 5 2 3 2 5 4 4
## [2534] 1 2 3 2 1 3 1 1 1 4 2 1 2 5 5 2 4
## [2551] 2 6 4 2 4 2 3 2 4 4 3 6 4 3 2 1 3
## [2568] 3 1 2 4 4 3 2 2 5 4 2 7 3 6 4 1 6
## [2585] 2 7 2 3 2 4 2 2 2 5 4 8 1 1 2 5 4
## [2602] 2 1 1 1 5 10 3 1 3 3 3 4 1 4 3 3 4
## [2619] 5 1 3 2 1 3 4 2 3 4 4 4 3 2 6 2 2
## [2636] 2 3 3 2 5 4 3 3 3 3 6 1 3 2 4 4 4
## [2653] 3 1 5 3 1 5 3 2 4 6 4 4 3 1 3 2 4
## [2670] 4 5 3 3 2 3 2 3 4 5 1 3 1 4 3 3 4
## [2687] 5 2 5 1 4 3 4 2 5 1 2 4 3 4 3 2 4
## [2704] 8 2 4 1 3 4 2 4 4 4 4 1 1 4 5 6 4
## [2721] 3 2 3 2 2 4 3 5 3 4 1 1 2 2 3 1 1
## [2738] 7 2 1 1 2 4 3 1 3 2 4 1 2 1 3 3 1
## [2755] 1 2 2 4 7 7 2 2 2 5 3 3 1 2 4 4 2
## [2772] 8 5 3 4 3 5 3 6 4 3 2 1 1 3 4 1 1
## [2789] 4 2 3 4 3 1 3 2 1 3 1 2 4 1 2 4 2
## [2806] 1 3 2 1 4 2 6 3 1 1 1 1 4 3 4 1 3
## [2823] 3 3 3 2 3 3 2 5 3 5 1 1 2 1 3 4 4
## [2840] 2 1 2 3 2 2 2 1 1 1 3 4 2 4 4 2 2
## [2857] 2 3 4 4 1 4 4 1 1 3 3 1 4 2 5 3 1
## [2874] 3 1 2 1 3 1 4 2 2 2 4 5 3 3 2 4 1
## [2891] 4 9 1 2 6 2 2 3 1 8 2 2 4 2 3 1 4
## [2908] 2 6 4 1 4 3 4 2 3 3 2 2 1 2 1 4 5
## [2925] 3 2 2 5 2 1 1 5 4 3 1 2 1 2 5 3 2
## [2942] 2 5 5 1 3 2 4 3 2 2 4 2 6 4 3 1 2
## [2959] 1 5 2 5 4 1 5 1 5 3 3 3 3 1 3 1 3
## [2976] 3 2 2 1 1 3 3 2 2 3 6 3 6 1 4 4 4
## [2993] 2 2 5 2 2 3 6 1 2 5 3 2 3 1 2 2 1
## [3010] 4 4 3 1 5 2 4 4 2 2 3 1 1 2 3 3 4
## [3027] 2 3 1 2 2 2 2 2 3 1 4 6 2 1 5 1 1
## [3044] 1 2 4 4 1 3 4 4 3 1 4 5 1 4 3 1 1
## [3061] 3 4 1 5 3 4 3 1 2 1 1 3 2 4 2 3 2
## [3078] 2 3 3 3 5 4 3 5 2 1 1 1 2 4 3 1 2
## [3095] 2 5 3 3 2 2 1 2 1 1 3 2 3 1 3 4 4
## [3112] 2 3 1 2 4 3 1 4 1 3 3 5 3 2 6 1 3
## [3129] 3 3 3 1 3 3 2 5 1 1 3 1 1 2 2 1 1
## [3146] 5 5 1 1 2 7 2 3 1 3 2 2 2 3 3 2 3
## [3163] 3 3 1 4 1 1 2 3 1 4 3 3 4 3 2 3 1
## [3180] 6 1 3 2 1 2 3 4 1 2 3 4 1 2 2 3 3
## [3197] 4 3 2 1 2 4 1 1 3 4 2 3 2 3 4 4 4
## [3214] 2 1 4 2 3 1 2 3 3 4 5 1 2 3 2 3 2
## [3231] 4 2 3 2 3 3 2 1 3 3 3 2 3 4 1 2 3
## [3248] 3 3 3 1 3 1 4 3 3 2 3 1 5 2 1 2 2
## [3265] 4 6 1 1 4 2 6 5 3 3 3 2 3 1 4 1 1
## [3282] 2 3 2 3 1 3 3 2 1 3 1 3 4 2 5 2 3
## [3299] 2 3 2 3 4 1 1 4 3 5 1 3 3 4 1 3 4
## [3316] 2 1 1 3 1 7 1 2 4 1 2 2 1 1 3 4 4
## [3333] 2 3 1 3 2 1 3 1 2 1 1 1 4 3 3 1 2
## [3350] 1 4 3 2 2 3 3 2 4 4 2 5 3 1 1 2 1
## [3367] 3 3 3 1 2 3 4 6 3 4 2 1 1 1 2 5 1
## [3384] 2 5 3 2 3 3 1 1 5 3 2 4 3 1 3 2 2
## [3401] 2 2 3 2 4 1 2 4 3 3 7 2 1 2 3 2 2
## [3418] 3 3 2 1 2 4 2 3 4 2 3 2 1 1 2 2 4
## [3435] 2 4 1 1 2 3 2 6 2 3 1 3 4 3 4 1 3
## [3452] 3 3 4 2 5 3 2 4 3 2 1 2 2 2 3 1 3
## [3469] 5 3 1 2 1 2 1 1 1 2 3 3 5 1 3 1 2
## [3486] 3 3 3 1 4 1 2 3 1 2 2 3 5 2 2 1 3
## [3503] 5 2 1 3 2 1 1 1 2 3 1 3 2 3 1 3 3
## [3520] 1 2 4 3 1 4 2 2 2 3 2 1 4 2 4 1 2
## [3537] 2 5 1 2 3 1 4 3 2 1 4 2 3 2 1 3 3
## [3554] 3 1 3 2 3 2 4 3 1 4 2 1 2 3 4 3 2
## [3571] 1 5 1 2 3 1 2 2 3 2 2 1 1 3 1 2 3
## [3588] 3 1 3 4 3 2 1 1 3 3 2 3 3 7 3 5 1
## [3605] 1 4 1 3 1 2 3 2 2 4 5 3 2 2 1 3 5
## [3622] 3 3 3 4 3 1 1 4 3 1 3 1 1 2 3 3 4
## [3639] 3 3 1 1 2 1 2 1 4 2 3 3 3 2 3 1 4
## [3656] 4 2 2 3 3 4 3 3 2 3 3 1 1 4 2 1 3
## [3673] 1 1 2 3 3 3 1 3 2 2 3 2 3 3 4 3 4
## [3690] 1 2 2 2 2 2 3 2 1 1 4 1 3 3 2 2 1
## [3707] 3 1 3 3 3 1 4 3 2 3 1 3 3 2 3 4 3
## [3724] 3 3 2 2 3 2 2 3 3 3 2 2 1 3 3 1 2
## [3741] 3 3 1 3 2 2 1 4 5 3 1 4 2 3 3 1 4
## [3758] 2 1 3 4 3 2 1 2 2 1 1 1 2 3 3 4 1
## [3775] 2 3 3 3 1 2 2 3 2 2 2 2 1 2 3 4 4
## [3792] 4 2 2 3 3 1 1 3 4 2 2 2 4 1 3 2 1
## [3809] 1 1 2 1 1 2 2 1 4 3 2 1 2 3 4 3 1
## [3826] 2 1 4 3 1 3 2 1 4 2 2 1 1 3 3 1 1
## [3843] 4 3 2 1 2 2 2 3 1 2 3 4 1 3 3 2 3
## [3860] 3 2 3 3 4 2 1 1 1 4 2 2 2 2 3 3 1
## [3877] 1 2 2 2 2 2 2 1 2 3 2 1 4 1 1 1 2
## [3894] 3 3 3 2 2 1 3 3 1 1 1 4 2 4 4 1 3
## [3911] 2 3 1 3 1 3 5 4 3 2 2 1 5 3 1 3 2
## [3928] 2 3 3 4 2 3 1 2 1 2 1 4 3 3 1 3 4
## [3945] 2 2 1 2 3 4 3 2 2 3 2 4 3 5 3 2 1
## [3962] 2 2 3 3 1 3 1 2 1 3 3 3 2 1 2 1 4
## [3979] 1 1 2 1 3 1 1 3 2 4 2 3 3 3 1 1 1
## [3996] 3 3 5 2 2 2 1 4 3 2 1 2 3 2 2 2 6
## [4013] 1 1 3 1 3 2 3 1 3 3 1 3 3 1 4 2 1
## [4030] 2 5 3 4 1 2 2 1 4 2 2 3 1 4 4 3 1
## [4047] 1 3 2 4 1 4 3 2 3 3 1 3 1 2 1 2 1
## [4064] 3 5 1 2 4 3 2 1 2 2 3 2 2 3 1 3 2
## [4081] 4 3 3 1 3 3 1 3 1 3 3 3 3 3 5 1 3
## [4098] 3 1 2 1 3 3 1 5 2 1 1 3 3 2 3 6 2
## [4115] 1 3 2 2 1 3 1 4 4 3 4 2 1 2 2 4 1
## [4132] 4 2 4 3 3 2 3 3 2 3 1 2 1 3 3 3 1
## [4149] 3 3 2 2 1 1 1 2 2 3 2 2 4 2 3 1 1
## [4166] 2 1 2 3 3 3 3 2 3 3 2 3 1 2 4 1 2
## [4183] 3 3 2 4 1 2 4 2 3 3 2 1 3 3 2 3 1
## [4200] 4 3 4 3 1 1 4 5 3 4 2 1 4 2 3 1 3
## [4217] 2 3 3 2 2 2 4 1 2 2 3 3 2 3 2 1 2
## [4234] 3 3 2 3 1 2 4 3 1 2 1 4 2 3 1 3 1
## [4251] 3 1 3 3 3 1 2 3 2 1 2 2 3 3 1 4 2
## [4268] 2 1 1 2 2 2 2 2 1 1 3 1 1 2 3 2 3
## [4285] 2 3 1 3 3 2 3 1 2 5 2 2 1 3 1 3 1
## [4302] 2 2 2 1 3 1 4 1 2 3 1 3 2 4 3 2 2
## [4319] 3 1 1 2 4 3 1 3 3 2 2 3 3 1 3 3 3
## [4336] 1 1 1 3 2 1 1 1 2 1 2 3 2 1 1 4 1
## [4353] 2 3 1 3 1 2 3 2 1 1 2 2 4 2 3 3 2
## [4370] 3 1 2 4 1 1 1 1 1 3 2 4 1 3 1 2 2
## [4387] 1 1 3 1 3 1 1 2 3 2 2 2 1 3 1 3 3
## [4404] 5 2 3 1 4 4 1 2 1 3 4 1 3 2 2 3 1
## [4421] 1 3 2 3 3 1 1 2 1 2 1 1 1 2 1 1 2
## [4438] 1 3 2 4 3 6 2 2 1 1 2 2 1 3 3 1 1
## [4455] 1 2 2 2 4 3 2 4 3 2 2 2 2 2 3 4 1
## [4472] 2 2 2 3 2 3 3 1 1 2 3 1 1 3 4 1 2
## [4489] 2 3 3 2 3 1 4 2 3 3 3 3 2 1 3 1 1
## [4506] 3 1 3 3 3 3 2 3 3 1 1 3 2 3 4 3 3
## [4523] 3 2 2 2 1 1 2 3 2 2 3 2 2 2 2 4 1
## [4540] 4 3 2 3 4 1 3 3 4 1 3 1 3 2 2 2 1
## [4557] 1 1 1 3 4 2 2 1 1 2 2 4 1 1 4 3 2
## [4574] 2 3 2 2 1 4 2 3 1 1 2 3 3 1 3 3 1
## [4591] 1 3 1 2 2 1 3 4 1 4 2 1 2 3 2 3 3
## [4608] 3 4 2 2 3 3 3 3 3 1 1 2 2 2 3 2 1
## [4625] 2 2 2 2 1 3 3 2 1 3 2 3 2 2 1 3 2
## [4642] 3 3 3 2 3 3 3 3 3 3 1 2 2 3 2 3 2
## [4659] 1 2 3 3 3 1 3 2 2 2 2 2 3 1 5 2 3
## [4676] 1 1 2 3 3 1 1 3 3 3 2 3 2 3 2 2 1
## [4693] 3 2 3 1 2 1 2 3 2 2 1 3 3 1 3 1 2
## [4710] 3 1 1 2 1 3 3 2 2 2 3 3 2 1 2 3 3
## [4727] 2 1 1 2 3 1 2 1 3 1 3 2 1 4 3 1 2
## [4744] 3 1 2 3 1 2 3 4 1 2 2 2 2 2 2 3 2
## [4761] 1 3 2 3 2 3 1 1 1 3 3 1 3 3 2 3 1
## [4778] 3 2 1 1 1 4 3 2 3 1 1 3 2 2 2 3 4
## [4795] 1 1 1 3 1 3 1 3 2 3 1 2 3 4 3 1 1
## [4812] 2 2 1 1 3 2 2 2 2 1 1 3 3 1 3 3 2
## [4829] 2 2 3 2 3 3 3 2 1 2 1 3 1 3 2 1 3
## [4846] 1 3 1 2 2 2 3 2 3 2 1 3 3 1 1 3 1
## [4863] 3 1 1 3 3 1 3 1 2 3 1 2 3 2 3 1 2
## [4880] 3 2 3 1 1 2 1 2 3 2 1 2 1 1 1 1 2
## [4897] 1 2 1 1 3 3 1 3 1 1 2 3 2 1 3 1 3
## [4914] 1 2 1 2 2 2 1 2 1 2 1 2 1 2 1 3 2
## [4931] 3 3 2 1 1 1 3 3 3 3 3 3 3 2 2 1 1
## [4948] 2 3 1 3 2 3 1 3 2 1 2 3 2 3 3 3 2
## [4965] 2 2 3 1 3 3 1 3 1 3 2 1 1 2 2 1 2
## [4982] 3 1 1 3 1 1 2 3 2 1 2 3 3 3 3 1 1
## [4999] 2 1 3 1 3 2
Find and plot the degree distribution in i) linear scale
plot((degree.distribution(g5004,cumulative = FALSE,loops=FALSE,normalized=FALSE,mode=c("total"))),main = "Degree Distribution for 5004 Nodes",xlab = "Degrees",ylab = "Fractions")
and ii) log-log scale.
plot((degree.distribution(g5004,cumulative = FALSE,loops=FALSE,normalized=FALSE,mode=c("total"))),main = "Degree Distribution for 5004 Nodes Log/Log",xlab = "Degrees",ylab = "Fractions",log = "xy")
EXtra Credit Assignment Part 2 (The 2, 5004 node newtworks are already plotted in their corresponding sections) Following are the 2 network plots for 100 additional nodes. 3 Fixed links when arriving into network: In the following graph, larger Nodes have a higher degree and are shown in the center.
g5004<-barabasi.game(104, power = 1, m = 3, out.dist = NULL, out.seq = NULL,
out.pref = FALSE, zero.appeal = 1, directed = FALSE,
algorithm = c("psumtree"), start.graph = g)
deg <- degree(g5004, mode="all")
l <- layout_with_fr(g5004)
l <- norm_coords(l, ymin=-15.3, ymax=15.3, xmin=-23, xmax=23)
par(mfrow=c(1,1), mar=c(0,0,0,0))
plot(g5004, rescale=F, layout=l*.07,vertex.label=NA,vertex.size=deg*.1,edge.width=.0000000000000000001,edge.curved=.1)
Choice of 1,2, or 3 links: In the following graph, larger Nodes have a higher degree and are shown in the center. You can also notice nodes with single links on the outskirts of the graph since we are adding a choice of links of 1,2, or 3 when a node enters.
g5004<-barabasi.game(104, power = 1, m = NULL, out.dist = v, out.seq = NULL,
out.pref = FALSE, zero.appeal = 1, directed = FALSE,
algorithm = c("psumtree"), start.graph = g)
deg <- degree(g5004, mode="all")
l <- layout_with_fr(g5004)
l <- norm_coords(l, ymin=-15.3, ymax=15.3, xmin=-23, xmax=23)
par(mfrow=c(1,1), mar=c(0,0,0,0))
plot(g5004, rescale=F, layout=l*.07,vertex.label=NA,vertex.size=deg*.1,edge.width=.0000000000000000001,edge.curved=.1)