Model Summaries

This is a short demonstration of the various outputs for different Stan models, provided by the tidy_stan() function of the sjstats-package.

The aim of this functions is, first, to return a tidy data frame of the results of regression models. And, second, to print the results in a compact and clear way, focussing on the model “coefficients” and help the user to quickly glance at different structural parts of the model (random vs. fixed effects, conditional vs. zero-inflation part and so on).

To demonstrate the function, several different models were fitted using the great brms package.

Note that the output in the R console is colored, unlike what is shown here (knitr supports coloured output created by the crayon package only with additional effort.)

As of today, if you download the current GitHub-version from sjstats (see link above), you could fully reproduce the below examples.

Data preparation

library(lme4)
library(sjstats)
library(sjmisc)
library(brms)
library(rstanarm)
library(dplyr)

data(efc)
data(sleepstudy)

zinb <- read.csv("http://stats.idre.ucla.edu/stat/data/fish.csv")

sleepstudy$grp <- sample(1:5, size = 180, replace = TRUE)
sleepstudy <- sleepstudy %>%
  group_by(grp) %>%
  mutate(subgrp = sample(1:15, size = n(), replace = TRUE))

efc <- to_factor(efc, e42dep, c172code, c161sex, e15relat)

Model Fitting

Here we fit some (nonsense) models…

b1 <- brm(neg_c_7 ~ e42dep + c12hour + c172code, data = efc)
b2 <- brm(neg_c_7 ~ e42dep + c12hour + c172code + (1 | e15relat), data = efc)
b3 <- brm(mpg ~ wt + (1|cyl) + (1+wt|gear), data = mtcars)
b5 <- brm(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
b6 <- brm(Reaction ~ Days + (1 | grp / subgrp) + (1 | Subject), data = sleepstudy)
b7 <- brm(cbind(c82cop1, c83cop2, c84cop3) ~ c161sex + e42dep, data = efc)

f1 <- bf(neg_c_7 ~ e42dep + c12hour + c172code)
f2 <- bf(c12hour ~ c172code)
b8 <- brm(f1 + f2 + set_rescor(FALSE), data = efc)

b9 <- brm(
  count ~ persons + child + camper,
  data = zinb,
  family = zero_inflated_poisson()
)
  
b10 <-brm(
  bf(count ~ persons + child + camper, zi ~ child + camper),
  data = zinb,
  family = zero_inflated_poisson()
)
  
b11 <- brm(
  bf(count ~ child + camper + (1 | persons), 
     zi ~ child + camper),
  data = zinb,
  family = zero_inflated_poisson()
)

b12 <- brm(
  bf(count ~ child + camper + (1 | persons), 
     zi ~ child + camper + (1 | persons)),
  data = zinb,
  family = zero_inflated_poisson()
)
  
b13 <- brm(
  cbind(c82cop1, c83cop2, c84cop3) ~ c161sex + e42dep + (1 | e15relat),
  data = efc
)
  
f3 <- bf(neg_c_7 ~ e42dep + c12hour + c172code + (1 |ID| e15relat))
f4 <- bf(c12hour ~ c172code + (1 |ID| e15relat))
b14 <- brm(f3 + f4 + set_rescor(FALSE), data = efc)

Summary Outputs

Here we see the different summary outputs. tidy_stan() has some options; for instance, for multilevel models, you can either print the fixed effects coefficients (default), only random effects coefficients (type = "random") or both (type = "all"). For demonstration purposes, the latter option is always used here.

Simple linear model

tidy_stan(b1, type = "all")

# Summary Statistics of Stan-Model

           estimate std.error     HDI(89%) n_eff Rhat mcse
 Intercept     8.91      0.50 [ 8.10 9.74]  0.53 1.00 0.04
 e42dep2       1.20      0.53 [ 0.45 2.09]  0.47 1.00 0.05
 e42dep3       2.43      0.51 [ 1.57 3.17]  0.50 1.00 0.05
 e42dep4       3.97      0.49 [ 3.27 4.92]  0.55 1.00 0.04
 c12hour       0.01      0.00 [ 0.00 0.01]  1.00 1.00 0.00
 c172code2     0.08      0.29 [-0.37 0.52]  0.67 1.00 0.02
 c172code3     0.60      0.37 [-0.12 1.05]  0.61 1.03 0.03
 sigma         3.61      0.10 [ 3.45 3.75]  0.90 1.00 0.01

Simple linear model

For the sake of demonstration, another example with multiple HDI’s and posterior mean instead of median.

tidy_stan(b1, prob = c(.5, .8), typical = "mean")

# Summary Statistics of Stan-Model

           estimate std.error     HDI(50%)     HDI(80%) n_eff Rhat mcse
 Intercept     8.92      0.50 [ 8.49 9.13] [ 8.29 9.54]  0.53 1.00 0.04
 e42dep2       1.17      0.53 [ 0.91 1.57] [ 0.54 1.82]  0.47 1.00 0.05
 e42dep3       2.43      0.51 [ 1.99 2.64] [ 1.91 3.17]  0.50 1.00 0.05
 e42dep4       4.00      0.49 [ 3.69 4.34] [ 3.27 4.56]  0.55 1.00 0.04
 c12hour       0.01      0.00 [ 0.01 0.01] [ 0.00 0.01]  1.00 1.00 0.00
 c172code2     0.10      0.29 [-0.09 0.29] [-0.24 0.46]  0.67 1.00 0.02
 c172code3     0.61      0.37 [ 0.26 0.74] [ 0.17 1.03]  0.61 1.03 0.03
 sigma         3.61      0.10 [ 3.52 3.65] [ 3.49 3.73]  0.90 1.00 0.01

Random Intercept Model

tidy_stan(b2, type = "all")

# Summary Statistics of Stan-Model

## Fixed effects:

           estimate std.error     HDI(89%) n_eff Rhat mcse
 Intercept     8.82      0.60 [ 7.85 9.82]  0.68 1.00 0.05
 e42dep2       1.10      0.47 [ 0.10 1.78]  0.64 1.00 0.04
 e42dep3       2.28      0.55 [ 1.47 3.13]  0.68 1.00 0.04
 e42dep4       3.82      0.53 [ 3.10 4.86]  0.57 1.00 0.05
 c12hour       0.01      0.00 [ 0.00 0.01]  1.00 1.00 0.00
 c172code2     0.16      0.36 [-0.32 0.69]  0.41 1.02 0.03
 c172code3     0.67      0.42 [-0.01 1.28]  0.48 1.02 0.04
 sigma         3.58      0.09 [ 3.43 3.71]  1.00 1.01 0.01

## Random effect (Intercept)

            estimate std.error     HDI(89%) n_eff Rhat mcse
 e15relat.1     0.52      0.46 [-0.09 1.06]  0.52 1.00 0.04
 e15relat.2     0.35      0.32 [-0.14 0.80]  0.55 1.00 0.03
 e15relat.3    -0.04      0.33 [-0.68 0.82]  1.00 1.00 0.03
 e15relat.4     0.03      0.33 [-0.67 0.55]  0.78 1.00 0.03
 e15relat.5    -0.04      0.32 [-0.72 0.76]  1.00 1.01 0.03
 e15relat.6    -0.51      0.60 [-1.61 0.19]  0.57 1.00 0.05
 e15relat.7    -0.08      0.39 [-1.12 0.86]  0.62 1.00 0.05
 e15relat.8    -0.17      0.28 [-0.69 0.45]  0.72 1.00 0.03

Random Slope Random Intercept Model

tidy_stan(b5, type = "all")

# Summary Statistics of Stan-Model

## Fixed effects:

           estimate std.error        HDI(89%) n_eff Rhat mcse
 Intercept   251.37      7.17 [239.97 262.85]  0.41    1 0.18
 Days         10.44      1.60 [  7.85  13.18]  0.34    1 0.05
 sigma        25.82      1.50 [ 23.49  28.26]  1.00    1 0.02

## Random effect (Intercept)

             estimate std.error        HDI(89%) n_eff Rhat mcse
 Subject.308     2.68     14.22 [-19.83  24.45]  0.68    1 0.27
 Subject.309   -40.00     14.24 [-62.62 -17.70]  1.00    1 0.23
 Subject.310   -38.31     14.48 [-60.97 -14.96]  1.00    1 0.23
 Subject.330    23.03     14.38 [  0.12  45.19]  1.00    1 0.23
 Subject.331    21.44     14.14 [ -0.87  44.68]  0.72    1 0.27
 Subject.332     9.11     13.23 [-11.93  30.02]  0.81    1 0.24
 Subject.333    16.38     13.75 [ -4.22  37.80]  1.00    1 0.22
 Subject.334    -6.40     12.97 [-28.30  13.19]  0.73    1 0.24
 Subject.335    -0.60     14.42 [-24.00  22.52]  0.55    1 0.31
 Subject.337    34.60     13.69 [ 13.15  57.87]  1.00    1 0.22
 Subject.349   -24.45     13.58 [-46.83  -2.73]  0.66    1 0.27
 Subject.350   -12.33     13.98 [-34.93   9.99]  0.62    1 0.28
 Subject.351     4.22     14.34 [-16.91  27.99]  1.00    1 0.23
 Subject.352    20.70     13.48 [ -0.35  42.87]  1.00    1 0.22
 Subject.369     3.23     12.87 [-18.04  23.89]  0.79    1 0.24
 Subject.370   -24.06     14.63 [-47.74  -1.96]  0.67    1 0.28
 Subject.371     0.72     13.45 [-20.66  21.54]  0.82    1 0.23
 Subject.372    11.94     12.92 [ -8.43  33.42]  0.84    1 0.23

## Random effect Days

             estimate std.error        HDI(89%) n_eff Rhat mcse
 Subject.308     9.09      2.94 [  4.62  13.76]  0.56    1 0.06
 Subject.309    -8.63      2.88 [-13.42  -4.21]  0.69    1 0.06
 Subject.310    -5.54      2.79 [ -9.99  -0.78]  0.69    1 0.05
 Subject.330    -4.68      2.87 [ -9.08   0.22]  0.56    1 0.06
 Subject.331    -2.96      2.80 [ -7.56   1.54]  0.59    1 0.06
 Subject.332    -0.27      2.71 [ -4.37   4.13]  0.56    1 0.06
 Subject.333    -0.11      2.68 [ -4.98   3.92]  0.64    1 0.05
 Subject.334     0.99      2.69 [ -3.48   5.28]  0.62    1 0.05
 Subject.335   -10.61      2.87 [-15.52  -6.13]  0.61    1 0.06
 Subject.337     8.68      2.79 [  4.27  13.29]  0.65    1 0.06
 Subject.349     1.02      2.72 [ -3.46   5.30]  0.63    1 0.06
 Subject.350     6.57      2.72 [  1.97  11.07]  0.56    1 0.06
 Subject.351    -2.98      2.78 [ -7.65   1.33]  0.68    1 0.05
 Subject.352     3.51      2.74 [ -0.81   8.01]  0.66    1 0.05
 Subject.369     0.86      2.56 [ -3.42   5.15]  0.60    1 0.05
 Subject.370     4.64      2.89 [  0.64   9.84]  0.55    1 0.06
 Subject.371    -0.98      2.74 [ -4.96   3.59]  0.64    1 0.05
 Subject.372     1.31      2.73 [ -3.05   5.72]  0.63    1 0.05

Random Slope Random Intercept Model, with two Random Intercepts

tidy_stan(b3, type = "all")

# Summary Statistics of Stan-Model

## Fixed effects:

           estimate std.error      HDI(89%) n_eff Rhat mcse
 Intercept    25.79      0.54 [25.24 28.24]  0.05 1.07 0.60
 wt           -5.03      0.20 [-5.32 -4.83]  0.10 1.10 0.10
 sigma         2.58      0.04 [ 2.52  2.70]  0.17 1.00 0.02

## Random effect (Intercept: cyl)

       estimate std.error      HDI(89%) n_eff Rhat mcse
 cyl.4    -0.28      0.28 [-0.93  0.05]  0.08 1.05 0.33
 cyl.6    -1.92      0.73 [-3.89 -1.15]  0.07 1.08 0.32
 cyl.8    -4.12      0.82 [-6.48 -3.36]  0.07 1.04 0.41

## Random effect (Intercept: gear)

        estimate std.error      HDI(89%) n_eff Rhat mcse
 gear.3     1.82      1.03 [-1.93  3.01]  0.04 1.00 0.62
 gear.4    18.00      2.19 [11.60 21.73]  0.03 1.14 1.94
 gear.5     7.59      1.44 [ 5.88 11.31]  0.03 1.30 1.08

## Random effect wt

        estimate std.error      HDI(89%) n_eff Rhat mcse
 gear.3     3.07      0.45 [ 2.40  4.51]  0.06 1.04 0.24
 gear.4    -1.95      1.04 [-3.05 -0.05]  0.03 1.11 0.40
 gear.5     0.84      0.63 [ 0.06  2.16]  0.06 1.07 0.24

Random Intercept Model, nested groups

tidy_stan(b6, type = "all")

# Summary Statistics of Stan-Model

## Fixed effects:

           estimate std.error        HDI(89%) n_eff Rhat mcse
 Intercept   251.73     11.98 [231.20 268.84]  0.15 1.07 1.93
 Days         10.65      0.84 [  9.45  12.08]  1.00 1.00 0.05
 sigma        30.59      1.43 [ 27.86  32.78]  1.00 1.00 0.10

## Random effect (Intercept: grp)

       estimate std.error        HDI(89%) n_eff Rhat mcse
 grp.1     3.19      5.38 [ -2.47  16.72]  0.61    1 0.53
 grp.2    -0.26      3.92 [-10.92   6.75]  1.00    1 0.35
 grp.3    -1.29      3.39 [-13.16   4.32]  1.00    1 0.34
 grp.4    -4.24      5.73 [-16.40   2.10]  0.36    1 0.70
 grp.5     1.51      4.19 [ -4.21  11.76]  1.00    1 0.33

## Random effect (Intercept: grp.subgrp)

                 estimate std.error        HDI(89%) n_eff Rhat mcse
 grp.subgrp.1_1      0.22      2.86 [ -7.08   7.98]  1.00 1.00 0.33
 grp.subgrp.1_10    -0.06      3.04 [ -7.43   6.91]  1.00 1.00 0.29
 grp.subgrp.1_11     0.73      2.81 [ -7.17   7.69]  1.00 1.00 0.36
 grp.subgrp.1_12    -0.12      2.90 [ -7.40   7.79]  1.00 1.00 0.31
 grp.subgrp.1_13     0.18      2.48 [ -6.10   6.06]  1.00 1.00 0.25
 grp.subgrp.1_14     0.62      3.21 [ -5.17  10.07]  1.00 1.00 0.34
 grp.subgrp.1_15     0.03      2.61 [ -6.78   7.75]  1.00 1.00 0.29
 grp.subgrp.1_2      0.00      2.97 [ -7.45   7.88]  1.00 1.00 0.30
 grp.subgrp.1_3      0.00      2.53 [ -4.80   6.30]  1.00 1.00 0.22
 grp.subgrp.1_4      0.31      2.70 [ -4.63   7.25]  1.00 1.00 0.26
 grp.subgrp.1_5      0.40      2.60 [ -6.40   9.03]  1.00 1.01 0.31
 grp.subgrp.1_6      0.33      2.33 [ -6.19   7.18]  1.00 1.00 0.28
 grp.subgrp.1_7      0.04      2.73 [ -7.33   8.37]  1.00 1.00 0.33
 grp.subgrp.1_8     -0.31      2.75 [ -9.45   4.29]  1.00 1.00 0.29
 grp.subgrp.1_9     -0.68      2.89 [ -7.95   8.42]  1.00 1.00 0.31
 grp.subgrp.2_1      0.01      2.65 [ -6.68   6.40]  1.00 1.00 0.27
 grp.subgrp.2_10    -0.05      2.94 [-11.04   4.63]  1.00 1.01 0.32
 grp.subgrp.2_11    -0.04      2.70 [ -7.29   6.88]  1.00 1.00 0.30
 grp.subgrp.2_12    -0.05      2.53 [ -5.98   5.51]  1.00 1.00 0.23
 grp.subgrp.2_13    -0.07      2.73 [-11.13   5.31]  1.00 1.00 0.32
 grp.subgrp.2_14     0.18      2.10 [ -5.55   7.26]  1.00 1.00 0.30
 grp.subgrp.2_15    -0.39      3.22 [-10.74   6.45]  1.00 1.00 0.32
 grp.subgrp.2_2     -0.03      3.08 [ -6.27   9.10]  1.00 1.01 0.29
 grp.subgrp.2_3     -0.04      2.93 [ -6.14   7.83]  1.00 1.01 0.28
 grp.subgrp.2_4     -0.32      2.16 [ -6.20   5.36]  1.00 1.00 0.25
 grp.subgrp.2_5      0.06      3.02 [ -6.36   8.90]  1.00 1.00 0.35
 grp.subgrp.2_6      0.24      2.84 [ -5.54   7.86]  1.00 1.00 0.27
 grp.subgrp.2_7     -0.43      3.00 [ -7.93   4.83]  1.00 1.00 0.26
 grp.subgrp.2_8     -0.20      3.46 [ -8.51   7.64]  1.00 1.00 0.31
 grp.subgrp.2_9      0.21      2.25 [ -5.55   8.00]  1.00 1.00 0.29
 grp.subgrp.3_1     -0.02      2.53 [ -5.33   6.96]  1.00 1.00 0.25
 grp.subgrp.3_10     0.09      3.55 [ -8.51   7.27]  1.00 1.00 0.33
 grp.subgrp.3_11    -0.26      2.84 [ -8.01   4.97]  1.00 1.00 0.28
 grp.subgrp.3_12    -0.13      2.67 [ -6.59   6.22]  1.00 1.00 0.28
 grp.subgrp.3_13    -0.19      2.27 [ -8.67   7.47]  1.00 1.00 0.36
 grp.subgrp.3_14    -0.33      2.32 [ -5.93   6.14]  1.00 1.00 0.25
 grp.subgrp.3_15     0.43      3.47 [ -6.22   8.61]  1.00 1.00 0.30
 grp.subgrp.3_3     -0.03      2.48 [ -7.59   6.41]  1.00 1.00 0.28
 grp.subgrp.3_4      0.13      2.68 [ -6.56   6.99]  1.00 1.00 0.27
 grp.subgrp.3_5      0.30      2.35 [ -4.45   9.64]  1.00 1.00 0.30
 grp.subgrp.3_6      0.30      2.43 [ -5.13   7.11]  1.00 1.00 0.27
 grp.subgrp.3_7     -0.58      2.94 [ -9.18   6.56]  1.00 1.00 0.33
 grp.subgrp.3_8      0.52      2.60 [ -4.65   6.75]  1.00 1.00 0.24
 grp.subgrp.3_9     -0.17      2.81 [ -6.62   5.83]  1.00 1.00 0.25
 grp.subgrp.4_1      0.23      2.83 [ -5.25   9.38]  1.00 1.00 0.29
 grp.subgrp.4_10    -0.16      2.90 [ -6.28   6.55]  1.00 1.01 0.31
 grp.subgrp.4_12    -0.24      2.46 [-10.40   2.96]  1.00 1.00 0.26
 grp.subgrp.4_13     0.06      2.28 [ -6.77   6.90]  1.00 1.00 0.28
 grp.subgrp.4_14    -0.05      2.40 [ -7.72   5.46]  1.00 1.00 0.25
 grp.subgrp.4_15    -0.04      2.62 [ -8.05   8.28]  1.00 1.00 0.31
 grp.subgrp.4_2      0.00      3.27 [ -7.54   8.75]  1.00 1.00 0.34
 grp.subgrp.4_3     -0.78      2.60 [ -9.97   4.00]  1.00 1.00 0.32
 grp.subgrp.4_4      0.62      2.99 [ -4.11   8.83]  1.00 1.00 0.28
 grp.subgrp.4_5     -0.05      2.77 [ -6.97   7.02]  1.00 1.00 0.30
 grp.subgrp.4_6      0.41      2.70 [ -7.69   9.59]  1.00 1.00 0.34
 grp.subgrp.4_7     -0.02      2.13 [ -6.53   6.59]  1.00 1.00 0.26
 grp.subgrp.4_9     -0.40      2.67 [ -8.80   5.31]  1.00 1.00 0.29
 grp.subgrp.5_1     -0.01      2.88 [ -8.14   6.65]  1.00 1.00 0.30
 grp.subgrp.5_10     0.09      2.66 [ -5.87   7.70]  0.91 1.00 0.30
 grp.subgrp.5_11     0.08      2.68 [ -6.77   7.67]  1.00 1.00 0.30
 grp.subgrp.5_12     0.28      2.21 [ -6.25   6.66]  1.00 1.00 0.26
 grp.subgrp.5_13     0.02      2.51 [ -7.19   7.51]  1.00 1.00 0.31
 grp.subgrp.5_14    -0.61      2.59 [-10.02   3.86]  1.00 1.00 0.28
 grp.subgrp.5_15    -0.32      2.83 [ -8.37   7.50]  1.00 1.00 0.34
 grp.subgrp.5_2     -0.10      2.53 [ -7.71   5.74]  1.00 1.00 0.28
 grp.subgrp.5_3      0.11      2.53 [ -4.40  11.42]  1.00 1.00 0.31
 grp.subgrp.5_4     -0.16      2.99 [ -6.96   7.04]  1.00 1.00 0.30
 grp.subgrp.5_6      0.00      2.59 [ -7.16   6.90]  1.00 1.00 0.27
 grp.subgrp.5_7     -0.04      2.60 [ -5.69   5.81]  1.00 1.00 0.25
 grp.subgrp.5_8     -0.03      2.89 [ -6.38   6.80]  1.00 1.00 0.27
 grp.subgrp.5_9      0.77      2.75 [ -4.45   8.76]  1.00 1.00 0.28

## Random effect (Intercept: Subject)

             estimate std.error         HDI(89%) n_eff Rhat mcse
 Subject.308    40.61     13.82 [  22.12  63.53]  0.20 1.03 1.91
 Subject.309   -80.04     14.23 [-103.32 -59.21]  0.21 1.03 1.91
 Subject.310   -65.22     12.95 [ -82.35 -43.26]  0.20 1.04 1.77
 Subject.330     3.60     14.96 [ -21.30  22.46]  0.18 1.07 2.02
 Subject.331    10.17     13.01 [ -12.21  29.16]  0.21 1.03 1.84
 Subject.332     6.00     14.37 [ -16.51  27.21]  0.16 1.06 2.17
 Subject.333    17.29     13.30 [  -2.94  40.57]  0.26 1.03 1.72
 Subject.334    -2.57     14.54 [ -24.31  18.46]  0.15 1.07 2.14
 Subject.335   -46.92     14.64 [ -66.88 -25.52]  0.21 1.05 1.88
 Subject.337    71.01     11.32 [  52.30  92.85]  0.19 1.05 1.85
 Subject.349   -23.99     13.69 [ -45.77   2.03]  0.24 1.06 1.89
 Subject.350    11.32     13.37 [  -8.25  36.65]  0.22 1.05 1.88
 Subject.351    -8.57     14.11 [ -28.05  14.09]  0.22 1.06 1.80
 Subject.352    35.28     14.77 [  15.44  56.45]  0.21 1.02 1.84
 Subject.369     4.32     12.78 [ -13.53  29.51]  0.18 1.07 2.03
 Subject.370    -6.74     13.64 [ -27.43  13.46]  0.17 1.06 2.02
 Subject.371    -4.36     14.02 [ -22.81  18.83]  0.21 1.05 1.84
 Subject.372    16.36     14.24 [  -5.68  35.05]  0.20 1.05 1.88

Multivariate Response Model (same predictors)

tidy_stan(b7, type = "all")

# Summary Statistics of Stan-Model

## Response: c82cop1

           estimate std.error      HDI(89%) n_eff Rhat mcse
 Intercept     3.41      0.07 [ 3.29  3.54]  0.63    1 0.01
 c161sex2     -0.06      0.05 [-0.14  0.02]  1.00    1 0.00
 e42dep2      -0.11      0.08 [-0.25  0.01]  0.63    1 0.01
 e42dep3      -0.29      0.09 [-0.42 -0.17]  0.59    1 0.01
 e42dep4      -0.35      0.08 [-0.44 -0.19]  0.64    1 0.01

## Response: c83cop2

           estimate std.error      HDI(89%) n_eff Rhat mcse
 Intercept     1.51      0.09 [ 1.35  1.63]  0.71 1.00 0.01
 c161sex2      0.06      0.06 [-0.03  0.15]  1.00 1.00 0.00
 e42dep2       0.20      0.09 [ 0.09  0.36]  0.53 1.02 0.01
 e42dep3       0.49      0.09 [ 0.37  0.65]  0.62 1.00 0.01
 e42dep4       0.73      0.09 [ 0.62  0.90]  0.61 1.00 0.01

## Response: c84cop3

           estimate std.error      HDI(89%) n_eff Rhat mcse
 Intercept     1.16      0.12 [ 0.97  1.34]  0.46    1 0.01
 c161sex2     -0.03      0.07 [-0.12  0.09]  1.00    1 0.00
 e42dep2       0.24      0.13 [ 0.06  0.43]  0.41    1 0.01
 e42dep3       0.50      0.12 [ 0.31  0.65]  0.41    1 0.01
 e42dep4       0.82      0.14 [ 0.66  1.00]  0.40    1 0.01

## Residual Correlations

                 estimate std.error      HDI(89%) n_eff Rhat mcse
 c82cop1-c83cop2    -0.35      0.03 [-0.39 -0.30]  0.97    1    0
 c82cop1-c84cop3    -0.17      0.03 [-0.22 -0.12]  1.00    1    0
 c83cop2-c84cop3     0.31      0.03 [ 0.27  0.36]  1.00    1    0

Multivariate Response Model, Mediator Model

tidy_stan(b8, type = "all")

# Summary Statistics of Stan-Model

## Response: negc7

           estimate std.error      HDI(89%) n_eff Rhat mcse
 Intercept     8.92      0.56 [ 8.21  9.81]  0.67 1.00 0.04
 e42dep2       1.14      0.53 [ 0.31  1.98]  0.57 1.01 0.05
 e42dep3       2.43      0.49 [ 1.67  3.30]  0.55 1.02 0.05
 e42dep4       4.01      0.51 [ 3.17  5.02]  0.52 1.00 0.05
 c12hour       0.01      0.00 [ 0.00  0.01]  1.00 1.00 0.00
 c172code2     0.09      0.34 [-0.39  0.67]  1.00 1.00 0.02
 c172code3     0.67      0.44 [ 0.00  1.39]  1.00 1.00 0.03

## Response: c12hour

           estimate std.error       HDI(89%) n_eff Rhat mcse
 Intercept    50.02      3.78 [ 44.86 55.60]     1    1 0.23
 c172code2    -8.27      4.26 [-15.32 -2.02]     1    1 0.27
 c172code3   -15.69      5.23 [-22.84 -5.39]     1    1 0.35

Zero-Inflated Poisson

tidy_stan(b9, type = "all")

# Summary Statistics of Stan-Model

           estimate std.error      HDI(89%) n_eff Rhat mcse
 Intercept    -1.00      0.19 [-1.26 -0.74]  0.70 1.00 0.01
 persons       0.87      0.05 [ 0.82  0.95]  0.72 1.00 0.00
 child        -1.36      0.09 [-1.50 -1.22]  0.62 1.01 0.01
 camper        0.79      0.09 [ 0.66  0.93]  0.67 1.01 0.01
 zi            0.41      0.04 [ 0.34  0.47]  0.53 1.02 0.00

Zero-Inflated Poisson, incl. Zero-Inflation

tidy_stan(b10, type = "all")

# Summary Statistics of Stan-Model

## Conditional Model:

           estimate std.error      HDI(89%) n_eff Rhat mcse
 Intercept    -1.07      0.18 [-1.33 -0.82]  0.87    1 0.01
 persons       0.90      0.04 [ 0.83  0.96]  1.00    1 0.00
 child        -1.17      0.10 [-1.33 -1.04]  0.54    1 0.01
 camper        0.75      0.10 [ 0.61  0.91]  1.00    1 0.01

## Zero-Inflated Model:

           estimate std.error      HDI(89%) n_eff Rhat mcse
 Intercept    -0.58      0.32 [-1.08 -0.08]  1.00    1 0.02
 child         1.24      0.27 [ 0.78  1.61]  1.00    1 0.02
 camper       -0.60      0.36 [-1.15 -0.09]  0.81    1 0.02

Zero-Inflated Random-Intercept Model

tidy_stan(b11, type = "all")

# Summary Statistics of Stan-Model

## Conditional Model: Fixed effects

           estimate std.error      HDI(89%) n_eff Rhat mcse
 Intercept     1.16      0.82 [-0.24  2.98]  0.21 1.02 0.15
 child        -1.18      0.10 [-1.33 -1.03]  1.00 1.00 0.01
 camper        0.74      0.10 [ 0.59  0.90]  1.00 1.00 0.01

## Conditional Model: Random effect (Intercept)

           estimate std.error      HDI(89%) n_eff Rhat mcse
 persons.1    -1.52      0.84 [-3.44  0.00]  0.22 1.02 0.15
 persons.2    -0.27      0.85 [-2.09  1.24]  0.22 1.02 0.15
 persons.3     0.44      0.86 [-1.49  1.92]  0.21 1.02 0.16
 persons.4     1.36      0.83 [-0.47  2.77]  0.21 1.02 0.15

## Zero-Inflated Model: Fixed effects

           estimate std.error      HDI(89%) n_eff Rhat mcse
 Intercept    -0.63      0.35 [-1.24 -0.19]  0.98    1 0.02
 child         1.37      0.35 [ 0.87  1.84]  0.82    1 0.02
 camper       -0.74      0.39 [-1.38 -0.18]  0.96    1 0.03

Zero-Inflated Random-Intercept Model, incl. Random Intercept for Zero-Inflation

tidy_stan(b12, type = "all")

# Summary Statistics of Stan-Model

## Conditional Model: Fixed effects

           estimate std.error      HDI(89%) n_eff Rhat mcse
 Intercept     1.26      0.67 [ 0.20  2.34]  0.27 1.00 0.09
 child        -1.15      0.10 [-1.29 -1.00]  0.55 1.02 0.01
 camper        0.73      0.09 [ 0.58  0.86]  0.58 1.00 0.01

## Conditional Model: Random effect (Intercept: persons)

           estimate std.error      HDI(89%) n_eff Rhat mcse
 persons.1    -1.33      0.68 [-2.66 -0.23]  0.28    1 0.10
 persons.2    -0.38      0.67 [-1.73  0.60]  0.27    1 0.09
 persons.3     0.33      0.73 [-0.71  1.51]  0.28    1 0.09
 persons.4     1.26      0.67 [ 0.09  2.35]  0.27    1 0.09

## Zero-Inflated Model: Fixed effects

           estimate std.error      HDI(89%) n_eff Rhat mcse
 Intercept    -0.66      0.78 [-1.90  0.67]  0.44 1.01 0.08
 child         1.88      0.32 [ 1.43  2.41]  0.97 1.00 0.02
 camper       -0.83      0.35 [-1.39 -0.22]  0.83 1.00 0.03

## Zero-Inflated Model: Random effect (Intercept: persons)

           estimate std.error      HDI(89%) n_eff Rhat mcse
 persons.1     1.25      0.81 [-0.45  2.57]  0.31 1.00 0.13
 persons.2     0.23      0.66 [-1.24  1.41]  0.46 1.01 0.08
 persons.3    -0.23      0.70 [-1.45  1.00]  0.44 1.01 0.08
 persons.4    -1.34      0.70 [-2.46  0.10]  0.46 1.01 0.08

Multivariate Response Multilevel Model (same predictors)

tidy_stan(b13, type = "all")

# Summary Statistics of Stan-Model

## Fixed effects for response: c82cop1

           estimate std.error      HDI(89%) n_eff Rhat mcse
 Intercept     3.42      0.08 [ 3.29  3.56]  0.36    1 0.01
 c161sex2     -0.06      0.04 [-0.14  0.00]  0.76    1 0.00
 e42dep2      -0.10      0.07 [-0.22  0.01]  0.41    1 0.01
 e42dep3      -0.30      0.07 [-0.41 -0.18]  0.43    1 0.01
 e42dep4      -0.34      0.08 [-0.45 -0.21]  0.45    1 0.01

## Random effect (Intercept: e15relat) for response c82cop1

            estimate std.error      HDI(89%) n_eff Rhat mcse
 e15relat.1     0.01      0.05 [-0.07  0.11]  0.46 1.00 0.01
 e15relat.2    -0.02      0.04 [-0.12  0.04]  0.39 1.00 0.01
 e15relat.3    -0.05      0.07 [-0.18  0.05]  0.33 1.00 0.01
 e15relat.4    -0.02      0.05 [-0.11  0.07]  0.62 1.00 0.00
 e15relat.5    -0.02      0.06 [-0.16  0.07]  0.63 1.00 0.01
 e15relat.6     0.04      0.07 [-0.03  0.21]  0.38 1.00 0.01
 e15relat.7     0.00      0.05 [-0.11  0.14]  1.00 1.00 0.01
 e15relat.8     0.05      0.06 [-0.06  0.13]  0.43 1.02 0.01

## Fixed effects for response: c83cop2

           estimate std.error      HDI(89%) n_eff Rhat mcse
 Intercept     1.49      0.10 [ 1.37  1.66]  0.44    1 0.01
 c161sex2      0.07      0.05 [-0.01  0.16]  0.81    1 0.00
 e42dep2       0.20      0.09 [ 0.06  0.36]  0.53    1 0.01
 e42dep3       0.50      0.08 [ 0.36  0.65]  0.46    1 0.01
 e42dep4       0.73      0.09 [ 0.57  0.87]  0.47    1 0.01

## Random effect (Intercept: e15relat) for response c83cop2

            estimate std.error      HDI(89%) n_eff Rhat mcse
 e15relat.1     0.00      0.03 [-0.05  0.06]  0.90 1.01    0
 e15relat.2     0.01      0.03 [-0.03  0.08]  0.56 1.00    0
 e15relat.3     0.00      0.03 [-0.08  0.05]  0.91 1.00    0
 e15relat.4     0.00      0.02 [-0.05  0.08]  0.72 1.00    0
 e15relat.5     0.00      0.03 [-0.07  0.08]  0.83 1.00    0
 e15relat.6     0.00      0.03 [-0.08  0.05]  1.00 1.00    0
 e15relat.7     0.00      0.03 [-0.04  0.12]  0.94 1.00    0
 e15relat.8    -0.01      0.03 [-0.09  0.03]  1.00 1.00    0

## Fixed effects for response: c84cop3

           estimate std.error      HDI(89%) n_eff Rhat mcse
 Intercept     1.13      0.12 [ 0.96  1.31]  0.44    1 0.01
 c161sex2     -0.01      0.07 [-0.11  0.06]  1.00    1 0.00
 e42dep2       0.26      0.11 [ 0.06  0.39]  0.50    1 0.01
 e42dep3       0.49      0.09 [ 0.33  0.65]  0.38    1 0.01
 e42dep4       0.81      0.11 [ 0.62  0.95]  0.42    1 0.01

## Random effect (Intercept: e15relat) for response c84cop3

            estimate std.error      HDI(89%) n_eff Rhat mcse
 e15relat.1     0.06      0.08 [-0.02  0.20]  0.43 1.00 0.01
 e15relat.2     0.00      0.04 [-0.09  0.08]  0.59 1.00 0.00
 e15relat.3     0.01      0.06 [-0.10  0.17]  1.00 1.00 0.01
 e15relat.4    -0.01      0.06 [-0.14  0.08]  1.00 1.00 0.00
 e15relat.5     0.00      0.05 [-0.10  0.11]  1.00 1.01 0.00
 e15relat.6    -0.04      0.08 [-0.28  0.04]  0.82 1.00 0.01
 e15relat.7     0.00      0.06 [-0.19  0.14]  0.70 1.00 0.01
 e15relat.8     0.00      0.05 [-0.11  0.11]  1.00 1.00 0.00

## Residual Correlations

      correlation estimate std.error      HDI(89%) n_eff Rhat mcse
  c82cop1-c83cop2    -0.34      0.03 [-0.39 -0.30]  0.96 1.01    0
  c82cop1-c84cop3    -0.17      0.03 [-0.22 -0.12]  1.00 1.00    0
  c83cop2-c84cop3     0.31      0.03 [ 0.26  0.36]  1.00 1.00    0

Multivariate Response Multilevel Model, Mediator Model

tidy_stan(b14, type = "all")

# Summary Statistics of Stan-Model

## Fixed effects for response: negc7

           estimate std.error      HDI(89%) n_eff Rhat mcse
 Intercept     8.65      0.55 [ 7.62  9.43]  0.57    1 0.05
 e42dep2       1.17      0.46 [ 0.35  2.09]  0.54    1 0.04
 e42dep3       2.36      0.56 [ 1.48  3.18]  0.58    1 0.05
 e42dep4       3.92      0.55 [ 3.34  5.03]  0.48    1 0.05
 c12hour       0.01      0.00 [ 0.00  0.01]  1.00    1 0.00
 c172code2     0.18      0.27 [-0.22  0.68]  1.00    1 0.02
 c172code3     0.77      0.40 [-0.03  1.31]  1.00    1 0.03

## Random effect (Intercept: e15relat) for response negc7

            estimate std.error      HDI(89%) n_eff Rhat mcse
 e15relat.1     0.66      0.37 [ 0.10  1.41]  0.42 1.00 0.04
 e15relat.2     0.34      0.35 [-0.11  0.91]  0.30 1.00 0.04
 e15relat.3    -0.04      0.31 [-0.82  0.44]  0.92 1.00 0.03
 e15relat.4     0.05      0.29 [-0.48  0.65]  0.69 1.00 0.03
 e15relat.5    -0.24      0.45 [-0.94  0.56]  0.71 1.00 0.04
 e15relat.6    -0.54      0.53 [-1.50  0.23]  0.51 1.00 0.05
 e15relat.7     0.13      0.40 [-0.73  0.95]  0.67 1.01 0.04
 e15relat.8    -0.20      0.29 [-0.95  0.28]  0.48 1.00 0.04

## Fixed effects for response: c12hour

           estimate std.error       HDI(89%) n_eff Rhat mcse
 Intercept    36.92      8.39 [ 24.07 52.95]  0.51    1 0.87
 c172code2    -0.51      3.61 [ -6.31  6.29]  1.00    1 0.24
 c172code3    -7.14      4.07 [-13.88  0.18]  1.00    1 0.28

## Random effect (Intercept: e15relat) for response c12hour

            estimate std.error       HDI(89%) n_eff Rhat mcse
 e15relat.1    46.23      9.34 [ 30.34 60.29]  0.54 1.00 0.86
 e15relat.2     2.20      7.93 [-12.51 15.42]  0.51 1.00 0.85
 e15relat.3    -1.49     10.38 [-17.92 15.05]  1.00 1.00 0.71
 e15relat.4    -2.13     10.23 [-17.45 14.68]  0.57 1.00 0.86
 e15relat.5   -17.43     11.08 [-39.18 -0.82]  0.84 1.00 0.84
 e15relat.6   -21.49     14.09 [-42.85 -3.79]  1.00 1.00 0.83
 e15relat.7    19.22     15.84 [ -0.33 63.66]  0.25 1.01 2.45
 e15relat.8   -15.76     10.27 [-29.95  2.17]  0.63 1.00 0.84