data()
?iris
str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
dim(iris)
[1] 150 5
attributes(iris)
$names
[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
[5] "Species"
$row.names
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
[18] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
[35] 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
[52] 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
[69] 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
[86] 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
[103] 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
[120] 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
[137] 137 138 139 140 141 142 143 144 145 146 147 148 149 150
$class
[1] "data.frame"
class(iris)
[1] "data.frame"
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
tail(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
145 6.7 3.3 5.7 2.5 virginica
146 6.7 3.0 5.2 2.3 virginica
147 6.3 2.5 5.0 1.9 virginica
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica
summary(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
Species
setosa :50
versicolor:50
virginica :50
quantile(iris$Sepal.Length)
0% 25% 50% 75% 100%
4.3 5.1 5.8 6.4 7.9
var(iris$Sepal.Length)
[1] 0.6856935
#histogram with raw frequency
hist(iris$Sepal.Length)
#histogram with density on y-axis
hist(iris$Sepal.Length, freq=FALSE)
plot(density(iris$Sepal.Length))
table(iris$Species)
setosa versicolor virginica
50 50 50
tab1=table(iris$Species)
pie(tab1)
tab1=table(iris$Species)
barplot(tab1)
cov(iris$Sepal.Length, iris$Petal.Length)
[1] 1.274315
cor(iris$Sepal.Length, iris$Petal.Length)
[1] 0.8717538
cor(iris[,1:4])
Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411
Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259
Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654
Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000
aggregate(Sepal.Length ~ Species, summary, data=iris)
Species Sepal.Length.Min. Sepal.Length.1st Qu. Sepal.Length.Median
1 setosa 4.300 4.800 5.000
2 versicolor 4.900 5.600 5.900
3 virginica 4.900 6.225 6.500
Sepal.Length.Mean Sepal.Length.3rd Qu. Sepal.Length.Max.
1 5.006 5.200 5.800
2 5.936 6.300 7.000
3 6.588 6.900 7.900
boxplot(Sepal.Length ~Species, data=iris)
with(iris, plot(Sepal.Length,Sepal.Width,col=Species,pch=as.numeric(Species)))
pairs(iris)
##Ensure that the package scatterplot3d is installed already
library(scatterplot3d)
scatterplot3d(iris$Petal.Width,iris$Sepal.Length,iris$Sepal.Width)
##Ensure that the package rgl is installed already
library(rgl)
plot3d(iris$Petal.Width,iris$Sepal.Length,iris$Sepal.Width)
##Ensure that the package stats is installed already
library(stats)
distmatrix=as.matrix(dist(iris[,1:4]))
heatmap(distmatrix)
distmatrix=as.matrix(dist(mtcars[,]))
heatmap(distmatrix)
library(MASS)
parcoord(iris[1:4],col=iris$Species)
legend("topleft",levels(iris$Species),lty=1,col=iris$Species)
library(lattice)
parallelplot(~ iris[1:4]| Species, data=iris)
png("C:/Users/Gokul/desktop/chart1.png")
library(lattice)
parallelplot(~ iris[1:4]| Species, data=iris)
graphics.off()