Ex1
#載入package
library(pacman)
p_load(tidyverse)
#載入並整理資料
dta <- read.table("hs0.txt", h = T) %>%
mutate(female = factor(female, levels(female),
labels = c("Female", "Male")),
race = factor(race, levels(race),
labels = c("Black", "Asian", "Hispanic",
"White")),
ses = ordered(ses, levels = c("low", "middle",
"high"),
labels = c("Low", "Middle", "High"))) %>%
mutate(race = reorder(race, math, median))
str(dta)
## 'data.frame': 200 obs. of 11 variables:
## $ id : int 70 121 86 141 172 113 50 11 84 48 ...
## $ female : Factor w/ 2 levels "Female","Male": 2 1 2 2 2 2 2 2 2 2 ...
## $ race : Factor w/ 4 levels "Black","Hispanic",..: 3 3 3 3 3 3 1 2 3 1 ...
## ..- attr(*, "scores")= num [1:4(1d)] 45 61 47 54
## .. ..- attr(*, "dimnames")=List of 1
## .. .. ..$ : chr "Black" "Asian" "Hispanic" "White"
## $ ses : Ord.factor w/ 3 levels "Low"<"Middle"<..: 1 2 3 3 2 2 2 2 2 2 ...
## $ schtyp : Factor w/ 2 levels "private","public": 2 2 2 2 2 2 2 2 2 2 ...
## $ prog : Factor w/ 3 levels "academic","general",..: 2 3 2 3 1 1 2 1 2 1 ...
## $ read : int 57 68 44 63 47 44 50 34 63 57 ...
## $ write : int 52 59 33 44 52 52 59 46 57 55 ...
## $ math : int 41 53 54 47 57 51 42 45 54 52 ...
## $ science: int 47 63 58 53 53 63 53 39 58 NA ...
## $ socst : int 57 61 31 56 61 61 61 36 51 51 ...
bw <- with(dta, IQR(math)/(length(math)^(1/3)))
ggplot() +
#以男女數學成績資料做長條圖,男在左女在右
stat_bin(data = subset(dta, female=="Male"), binwidth = bw,
aes(math, color = "Male", fill = "Male", y = - ..density.. )) +
stat_bin(data = subset(dta, female == "Female"), binwidth = bw,
aes(math, color = "Female", fill = "Female", y = ..density.. )) +
#設定長條邊框顏色
scale_color_manual(values = c("black", "black"),
guide = guide_legend(title = NULL, direction = "horizontal",
title.position = "top", reverse = TRUE,
label.position = "bottom", label.hjust = .5, label.vjust = .5,
label.theme = element_text(angle = 90) ) ) +
#設定長條填滿顏色
scale_fill_manual(values = c("White", "gray80"),
guide = guide_legend(title = NULL, reverse = TRUE,
direction = "horizontal", title.position = "top",
label.position = "bottom", label.hjust = .5, label.vjust = .5,
label.theme = element_text(angle = 90))) +
#設定分數範圍與級距
scale_x_continuous(limits = c(30, 80), breaks=seq(30, 80, by = 5)) +
labs(x = "Mathematic score", y = "Density") +
coord_flip() +
theme_bw() +
theme(legend.position=c(.9, .85))

Ex2
library(ggeffects)
#輸入資料並更改資料labels
dta2 <- read.table("hs0.txt", header = T) %>%
mutate(female = factor(female, levels(female),
labels = c("Female", "Male")),
race = factor(race, levels(race),
labels = c("Black", "Asian", "Hispanic",
"White")),
ses = ordered(ses, levels = c("low", "middle",
"high"),
labels = c("Low", "Middle", "High")))
#畫圖
m0 <- lm(math ~ read + write + science + socst + race + ses + female, data = dta2)
dta_m0 <- ggpredict(m0, terms = c("race", "female", "ses"))
p1 <- plot(dta_m0)+labs(y = "Mean math score", x = "Race")
print(p1)

Ex3
dta3 <- read.table("kdt.csv", sep="",header=T)
knitr::kable(dta3)
| KDT |
Picture |
93.7 |
0.9 |
| KDT |
Word |
96.4 |
0.7 |
| PPT |
Picture |
90.6 |
1.0 |
| PPT |
Word |
88.9 |
1.0 |
ggplot(dta3,aes(Test, Accuracy,fill=Format))+
coord_cartesian(ylim=c(85,100))+
geom_bar(stat="identity",position='dodge', colour="black")+
geom_errorbar(aes(ymin = Accuracy-SE , ymax= Accuracy+SE), width = .2,position=position_dodge(0.9))+
scale_fill_manual(values=c("steel blue","yellow"))
