這個圖是畫出男女數學成績的直方圖,左右顯示。
library(pacman)
p_load(tidyverse)
dta <- read.table("hs0.txt", h = T) %>%
mutate(female = factor(female, levels(female),
labels = c("Female", "Male")),
race = factor(race, levels(race),
labels = c("Black", "Asian", "Hispanic",
"White")),
ses = ordered(ses, levels = c("low", "middle",
"high"),
labels = c("Low", "Middle", "High"))) %>%
mutate(race = reorder(race, math, median))
str(dta)
'data.frame': 200 obs. of 11 variables:
$ id : int 70 121 86 141 172 113 50 11 84 48 ...
$ female : Factor w/ 2 levels "Female","Male": 2 1 2 2 2 2 2 2 2 2 ...
$ race : Factor w/ 4 levels "Black","Hispanic",..: 3 3 3 3 3 3 1 2 3 1 ...
..- attr(*, "scores")= num [1:4(1d)] 45 61 47 54
.. ..- attr(*, "dimnames")=List of 1
.. .. ..$ : chr "Black" "Asian" "Hispanic" "White"
$ ses : Ord.factor w/ 3 levels "Low"<"Middle"<..: 1 2 3 3 2 2 2 2 2 2 ...
$ schtyp : Factor w/ 2 levels "private","public": 2 2 2 2 2 2 2 2 2 2 ...
$ prog : Factor w/ 3 levels "academic","general",..: 2 3 2 3 1 1 2 1 2 1 ...
$ read : int 57 68 44 63 47 44 50 34 63 57 ...
$ write : int 52 59 33 44 52 52 59 46 57 55 ...
$ math : int 41 53 54 47 57 51 42 45 54 52 ...
$ science: int 47 63 58 53 53 63 53 39 58 NA ...
$ socst : int 57 61 31 56 61 61 61 36 51 51 ...
bw <- with(dta, IQR(math)/(length(math)^(1/3)))
ggplot() +
stat_bin(data = subset(dta, female=="Male"), binwidth = bw, #分別畫出男女的直方圖
aes(math, color = "Male", fill = "Male", y = - ..density.. )) +
stat_bin(data = subset(dta, female == "Female"), binwidth = bw,
aes(math, color = "Female", fill = "Female", y = ..density.. )) +
scale_color_manual(values = c("black", "black"),
guide = guide_legend(title = NULL, direction = "horizontal",
title.position = "top", reverse = TRUE,
label.position = "bottom", label.hjust = .5, label.vjust = .5,
label.theme = element_text(angle = 90) ) ) +
scale_fill_manual(values = c("White", "gray80"),
guide = guide_legend(title = NULL, reverse = TRUE,
direction = "horizontal", title.position = "top",
label.position = "bottom", label.hjust = .5, label.vjust = .5,
label.theme = element_text(angle = 90))) +
scale_x_continuous(limits = c(30, 80), breaks=seq(30, 80, by = 5)) + # 畫x座標
labs(x = "Mathematic score", y = "Density") +
coord_flip() + # 反轉
theme_bw() +
theme(legend.position=c(.9, .85))
與講義上面的圖不一樣,一個是源於raw data,一個是lm估出來的。 有些只有一個資料點,則沒有error bar.
#arrange data
theme_set(theme_bw())
dta2 <- read.table("hs0.txt", h = T) %>%
mutate(female = factor(female, levels(female),
labels = c("Female", "Male")),
race = factor(race, levels(race),
labels = c("Black", "Asian", "Hispanic",
"White")),
ses = ordered(ses, levels = c("low", "middle",
"high"),
labels = c("Low", "Middle", "High")))
#plot
dta2 %>% group_by(female, race, ses) %>%
summarise(m_math = mean(math),
se_math = sd(math)/sqrt(n())) %>%
ggplot(aes(race, m_math, color = female)) +
geom_point(aes(race, m_math), position = position_dodge(.3)) +
geom_errorbar(aes(ymin = m_math - se_math,
ymax = m_math + se_math), width = .2, position = position_dodge(.3)) +
facet_grid(. ~ ses) +
labs(y = "Mean Math score", x = "race")
#read data
dta3 <- data.table::fread("kdt.csv", h = T) %>%
mutate(Test = factor(Test),
Format = factor(Format))
#plot
ggplot(dta3, aes(Test, Accuracy, fill = Format, color = Format)) +
geom_bar(stat = "identity", position = "dodge") +
geom_errorbar(aes(ymin = Accuracy - SE,
ymax = Accuracy + SE), width = .2, position = position_dodge(width = 0.9)) +
scale_color_manual(values = c("black", "black"),
guide = guide_legend(title = NULL)) +
scale_fill_manual(values = c("gray60", "gray30"),
guide = guide_legend(title = NULL)) +
coord_cartesian(ylim = c(85, 100)) +
labs(y = "Accuracy(%)", x = "Test")