1 FRESA.CAD Benchmark

1.1 Prostate Cancer Data Set


ProstateData <- read.delim("./prostate/prostate.txt")
Prostate <- ProstateData[,-1]
rownames(Prostate) <- ProstateData[,1]

ExperimentName <- "Prostate"
bswimsReps <- 20;
theData <- Prostate;
theOutcome <- "Class";
reps <- 75;
fraction <- 0.8;
theData[,1:ncol(theData)] <- sapply(theData,as.numeric)

BSWiMSFileName <- paste(ExperimentName,"FRESAMethod.RDATA",sep = "_")
CVFileName <- paste(ExperimentName,"CVMethod.RDATA",sep = "_")

1.2 Benchmarking



BSWiMSMODEL <- BSWiMS.model(formula = paste(theOutcome," ~ 1"),data = theData,NumberofRepeats = bswimsReps)

save(BSWiMSMODEL,file = BSWiMSFileName)

load(file = BSWiMSFileName)

par(mfrow = c(2,2),cex=0.6);
cp <- BinaryBenchmark(theData,theOutcome,reps,fraction)

par(mfrow = c(1,1),cex=1.0);

save(cp,file = CVFileName)

load(file = CVFileName)

1.3 Results

1.3.1 Classifier Results


hm <- heatMaps(Outcome = "Outcome",data = cp$testPredictions,title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.25,cexCol = 0.75,srtCol = 45) 


#The Times
pander::pander(cp$cpuElapsedTimes)
BSWiMS RF RPART LASSO SVM KNN ENS
44.46 171.4 10.67 1.351 0.01587 0.02427 227.9
learningTime <- -1*cp$cpuElapsedTimes
par(mfrow = c(2,1),cex=1.0);
pr <- plot(cp)

par(mfrow = c(1,1),cex=1.0);

1.3.2 Radar Plots

op <- par(no.readonly = TRUE)

library(fmsb)
par(mfrow = c(1,2),xpd = TRUE,pty = "s",mar = c(1,1,1,1))

mNames <- names(cp$cpuElapsedTimes)

classRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],min(cp$cpuElapsedTimes))
classRanks <- rbind(classRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,max(cp$cpuElapsedTimes)))
classRanks <- as.data.frame(rbind(classRanks,cbind(t(pr$metrics[c("BER","ACC","AUC","SEN","SPE"),mNames]),cp$cpuElapsedTimes)))
colnames(classRanks) <- c("BER","ACC","AUC","SEN","SPE","CPU")

classRanks$BER <- -classRanks$BER
classRanks$CPU <- -classRanks$CPU

colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(classRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex  = 0.5 ,title = "Prediction Model")

legend("topleft",legend = rownames(classRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)


filnames <- c("BSWiMS","LASSO","RF.ref","IDI","t-test","Kendall","mRMR")

filterRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],max(cp$jaccard),min(cp$featsize));

filterRanks <- rbind(filterRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,min(cp$jaccard),max(cp$featsize)));

filterRanks <- as.data.frame(rbind(filterRanks,cbind(t(pr$metrics_filter[c("BER","ACC","AUC","SEN","SPE"),filnames]),cp$jaccard[filnames],cp$featsize[filnames])));
colnames(filterRanks) <- c("BER","ACC","AUC","SEN","SPE","Jaccard","SIZE")
filterRanks$BER <- -filterRanks$BER
filterRanks$SIZE <- -filterRanks$SIZE

colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(filterRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex  = 0.6,title = "Filter Method" )


legend("topleft",legend = rownames(filterRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)


detach("package:fmsb", unload=TRUE)

par(mfrow = c(1,1))
par(op)

1.3.3 Feature Analysis



rm <- rowMeans(cp$featureSelectionFrequency)
selFrequency <- cp$featureSelectionFrequency[rm > 0.1,]
gplots::heatmap.2(selFrequency,trace = "none",mar = c(10,10),main = "Features",cexRow = 0.5)



topFeat <- min(ncol(BSWiMSMODEL$bagging$formulaNetwork),30);
gplots::heatmap.2(BSWiMSMODEL$bagging$formulaNetwork[1:topFeat,1:topFeat],trace="none",mar = c(10,10),main = "B:SWiMS Formula Network")

pander::pander(summary(BSWiMSMODEL$bagging$bagged.model,caption="Colon",round = 3))
  • coefficients:

    Table continues below
      Estimate lower OR upper u.Accuracy
    X40282_s_at -0.0033 0.9961 0.9967 0.9973 0.8333
    X37639_at 0.00336 1.003 1.003 1.004 0.8725
    X41468_at 0.001861 1.001 1.002 1.002 0.8529
    X40436_g_at 0.002672 1.002 1.003 1.003 0.7745
    X32243_g_at -0.00269 0.9967 0.9973 0.9979 0.8137
    X37366_at 0.001827 1.001 1.002 1.002 0.8431
    X38634_at -0.009618 0.9881 0.9904 0.9927 0.8333
    X31444_s_at -0.0004967 0.9994 0.9995 0.9996 0.7843
    X2041_i_at -0.02004 0.975 0.9802 0.9853 0.7647
    X33121_g_at 0.006488 1.005 1.007 1.008 0.7941
    X41288_at -0.00531 0.9933 0.9947 0.9961 0.8137
    X34840_at 0.005391 1.004 1.005 1.007 0.8039
    X36491_at 0.003699 1.003 1.004 1.005 0.8039
    X216_at -0.0006353 0.9992 0.9994 0.9995 0.7843
    X39939_at -0.009762 0.9875 0.9903 0.9931 0.7941
    X32598_at -0.002882 0.9963 0.9971 0.998 0.8824
    X38057_at -0.0008888 0.9988 0.9991 0.9994 0.7647
    X38087_s_at -0.006285 0.9918 0.9937 0.9957 0.7353
    X39756_g_at 0.0008522 1.001 1.001 1.001 0.7941
    X37720_at 0.002832 1.002 1.003 1.004 0.8431
    X33198_at -0.001194 0.9984 0.9988 0.9992 0.7941
    X769_s_at -0.0003782 0.9995 0.9996 0.9997 0.7745
    X38026_at -0.001195 0.9984 0.9988 0.9992 0.6667
    X36814_at -0.002217 0.9971 0.9978 0.9985 0.7451
    X575_s_at 0.0004621 1 1 1.001 0.8333
    X38028_at -0.01366 0.9819 0.9864 0.991 0.8137
    X32786_at 0.00211 1.001 1.002 1.003 0.7255
    X36601_at -0.0002904 0.9996 0.9997 0.9998 0.8333
    X556_s_at -0.001872 0.9975 0.9981 0.9988 0.7843
    X1980_s_at 0.000532 1 1.001 1.001 0.7353
    X38038_at -0.0007719 0.999 0.9992 0.9995 0.6863
    X38255_at 0.003448 1.002 1.003 1.005 0.6569
    X40856_at -0.0005574 0.9992 0.9994 0.9996 0.8431
    X37068_at 0.0134 1.009 1.013 1.018 0.8039
    X36589_at -0.002641 0.9964 0.9974 0.9983 0.7647
    X41661_at 0.00364 1.002 1.004 1.005 0.6078
    X41504_s_at -0.00484 0.9934 0.9952 0.997 0.7353
    X33546_at -0.008432 0.9885 0.9916 0.9947 0.5784
    X1767_s_at -0.003082 0.9958 0.9969 0.9981 0.7941
    X829_s_at -0.001939 0.9973 0.9981 0.9988 0.6863
    X1612_s_at 0.0001855 1 1 1 0.5882
    X36928_at 0.003256 1.002 1.003 1.005 0.6961
    X33415_at 0.0005804 1 1.001 1.001 0.7353
    X37736_at -0.003497 0.9952 0.9965 0.9979 0.6275
    X35807_at -0.002879 0.996 0.9971 0.9982 0.6765
    X914_g_at 0.007999 1.005 1.008 1.011 0.7941
    X38044_at -0.0009023 0.9987 0.9991 0.9995 0.8235
    X39545_at -0.003826 0.9947 0.9962 0.9977 0.7843
    X36569_at -0.0003228 0.9995 0.9997 0.9998 0.7255
    X33102_at -0.002996 0.9958 0.997 0.9982 0.6471
    X39315_at -0.002527 0.9964 0.9975 0.9985 0.7745
    X863_g_at -0.008072 0.9886 0.992 0.9953 0.6961
    X41483_s_at 0.00012 1 1 1 0.5882
    X36638_at 0.0003602 1 1 1.001 0.549
    X36864_at -0.01062 0.9849 0.9894 0.994 0.7451
    X41106_at 0.0009226 1.001 1.001 1.001 0.6961
    X40248_at -0.01001 0.9856 0.99 0.9945 0.598
    X41385_at -0.006293 0.9909 0.9937 0.9966 0.7451
    X32225_at 0.003609 1.002 1.004 1.005 0.6471
    X32747_at -0.0001819 0.9997 0.9998 0.9999 0.6765
    X41741_at 0.0003762 1 1 1.001 0.5196
    X33741_at -0.001983 0.9971 0.998 0.999 0.6373
    X38322_at -0.0008333 0.9988 0.9992 0.9996 0.7157
    X38406_f_at -0.000243 0.9996 0.9998 0.9999 0.8627
    X1846_at 0.003726 1.002 1.004 1.006 0.6373
    X37043_at -8.14e-05 0.9999 0.9999 1 0.7255
    X1052_s_at 0.0001609 1 1 1 0.6569
    X34820_at -7.622e-05 0.9999 0.9999 1 0.7157
    X40243_at 0.0003885 1 1 1.001 0.5392
    X35905_s_at 2.711e-05 1 1 1 0.5392
    X37599_at -0.0005311 0.9992 0.9995 0.9998 0.7059
    X38391_at -0.0007015 0.9988 0.9993 0.9998 0.598
    Table continues below
      r.Accuracy full.Accuracy u.AUC r.AUC full.AUC
    X40282_s_at 0.7275 0.9407 0.8315 0.7264 0.9406
    X37639_at 0.6897 0.9294 0.8727 0.6876 0.9296
    X41468_at 0.7034 0.9377 0.8538 0.7026 0.9382
    X40436_g_at 0.8 0.9196 0.7746 0.7983 0.9198
    X32243_g_at 0.7394 0.9174 0.8131 0.7391 0.9174
    X37366_at 0.7384 0.9107 0.845 0.7377 0.9112
    X38634_at 0.79 0.9345 0.8315 0.7893 0.9345
    X31444_s_at 0.7706 0.9304 0.7842 0.7704 0.9304
    X2041_i_at 0.8314 0.9294 0.7623 0.8301 0.9291
    X33121_g_at 0.8008 0.9154 0.7958 0.7995 0.9155
    X41288_at 0.7868 0.9245 0.8131 0.7856 0.9243
    X34840_at 0.7868 0.9208 0.8038 0.786 0.9207
    X36491_at 0.7804 0.9127 0.805 0.7802 0.9129
    X216_at 0.8126 0.921 0.7827 0.8129 0.921
    X39939_at 0.7825 0.913 0.7931 0.7816 0.9128
    X32598_at 0.799 0.9191 0.8808 0.7978 0.9187
    X38057_at 0.6863 0.8627 0.7635 0.6831 0.8627
    X38087_s_at 0.8364 0.9288 0.7331 0.8363 0.9286
    X39756_g_at 0.8028 0.9066 0.7946 0.8015 0.9065
    X37720_at 0.8279 0.9319 0.8435 0.827 0.932
    X33198_at 0.7843 0.8824 0.7938 0.7838 0.8821
    X769_s_at 0.8155 0.9127 0.7742 0.8148 0.9125
    X38026_at 0.8456 0.9289 0.6646 0.8458 0.929
    X36814_at 0.8137 0.9216 0.7442 0.8123 0.9212
    X575_s_at 0.7876 0.8856 0.8342 0.7868 0.8859
    X38028_at 0.8077 0.9101 0.8112 0.8073 0.9099
    X32786_at 0.8446 0.9441 0.7254 0.8433 0.9441
    X36601_at 0.7569 0.8814 0.8323 0.7553 0.881
    X556_s_at 0.8394 0.9216 0.7831 0.8388 0.9215
    X1980_s_at 0.8219 0.9248 0.7354 0.8219 0.9248
    X38038_at 0.7941 0.9078 0.685 0.795 0.9078
    X38255_at 0.8676 0.9363 0.6542 0.8673 0.9362
    X40856_at 0.7864 0.8908 0.8423 0.7866 0.8909
    X37068_at 0.8529 0.9271 0.8035 0.8517 0.9269
    X36589_at 0.7892 0.8734 0.7642 0.7877 0.8732
    X41661_at 0.8333 0.9412 0.6038 0.8315 0.9408
    X41504_s_at 0.8711 0.9377 0.7346 0.8718 0.9381
    X33546_at 0.8611 0.933 0.5773 0.8605 0.9329
    X1767_s_at 0.834 0.9052 0.7923 0.8344 0.9051
    X829_s_at 0.8478 0.9345 0.6854 0.8482 0.9347
    X1612_s_at 0.8388 0.9074 0.5885 0.8382 0.9073
    X36928_at 0.8595 0.9281 0.6969 0.8595 0.928
    X33415_at 0.8431 0.924 0.7358 0.8427 0.9242
    X37736_at 0.866 0.9118 0.6265 0.8664 0.9118
    X35807_at 0.8301 0.9063 0.6738 0.8294 0.906
    X914_g_at 0.8538 0.9199 0.7965 0.8534 0.92
    X38044_at 0.848 0.902 0.8231 0.8476 0.9017
    X39545_at 0.8147 0.8922 0.7842 0.8137 0.8916
    X36569_at 0.7974 0.8856 0.7238 0.7959 0.885
    X33102_at 0.8453 0.8998 0.645 0.8464 0.9001
    X39315_at 0.8556 0.9225 0.7742 0.8555 0.9223
    X863_g_at 0.837 0.9081 0.6946 0.836 0.9079
    X41483_s_at 0.8611 0.9199 0.5877 0.8608 0.9199
    X36638_at 0.8667 0.9333 0.5481 0.8667 0.9332
    X36864_at 0.8474 0.9136 0.7442 0.8475 0.9136
    X41106_at 0.7917 0.8407 0.6985 0.7925 0.8416
    X40248_at 0.8655 0.9104 0.5977 0.8659 0.9104
    X41385_at 0.8668 0.9198 0.7438 0.8666 0.9196
    X32225_at 0.8505 0.9338 0.6458 0.8506 0.934
    X32747_at 0.8627 0.9265 0.6762 0.8635 0.9269
    X41741_at 0.8725 0.9294 0.5185 0.8727 0.9293
    X33741_at 0.8775 0.9069 0.6373 0.8769 0.9067
    X38322_at 0.8209 0.8939 0.7127 0.8197 0.8935
    X38406_f_at 0.8706 0.9284 0.8619 0.8703 0.9284
    X1846_at 0.8627 0.9069 0.6377 0.8624 0.9065
    X37043_at 0.8824 0.9216 0.7235 0.8808 0.9212
    X1052_s_at 0.866 0.9118 0.6573 0.866 0.9123
    X34820_at 0.848 0.8922 0.7135 0.8475 0.8921
    X40243_at 0.8725 0.951 0.5346 0.8727 0.9508
    X35905_s_at 0.8725 0.9314 0.5388 0.8727 0.9319
    X37599_at 0.902 0.9314 0.7038 0.901 0.9315
    X38391_at 0.8088 0.8137 0.5973 0.8098 0.8144
      IDI NRI z.IDI z.NRI Frequency
    X40282_s_at 0.5345 1.64 11.44 16.21 1
    X37639_at 0.5108 1.438 11.38 11.82 1
    X41468_at 0.4839 1.571 9.98 12.89 1
    X40436_g_at 0.4059 1.535 8.708 12.9 1
    X32243_g_at 0.3652 1.414 8.517 11.1 0.95
    X37366_at 0.364 1.432 8.331 11.82 0.95
    X38634_at 0.3566 1.436 8.185 10.83 0.95
    X31444_s_at 0.3556 1.414 7.625 10.43 0.5
    X2041_i_at 0.3313 1.39 7.476 10.97 0.75
    X33121_g_at 0.3312 1.322 7.392 9.854 0.95
    X41288_at 0.3365 1.462 7.343 11.65 1
    X34840_at 0.31 1.306 7.267 9.216 0.6
    X36491_at 0.323 1.467 7.242 11.39 0.5
    X216_at 0.2974 1.331 6.832 9.521 0.85
    X39939_at 0.2882 1.274 6.735 8.564 0.8
    X32598_at 0.2833 1.197 6.689 8.769 1
    X38057_at 0.2565 1.288 6.344 9.177 0.15
    X38087_s_at 0.2702 1.438 6.32 11.91 0.95
    X39756_g_at 0.2683 1.334 6.317 9.38 0.85
    X37720_at 0.2625 1.063 6.212 8.616 1
    X33198_at 0.2519 1.334 6.099 9.295 0.2
    X769_s_at 0.2689 1.192 6.057 8.124 0.55
    X38026_at 0.2138 1.111 6.028 6.978 0.2
    X36814_at 0.261 1.647 5.946 15.45 0.1
    X575_s_at 0.2418 1.126 5.894 7.345 0.15
    X38028_at 0.2264 1.372 5.802 10.37 0.9
    X32786_at 0.2391 1.404 5.74 10.49 1
    X36601_at 0.2141 1.106 5.678 7.097 0.5
    X556_s_at 0.231 1.321 5.586 9.222 0.65
    X1980_s_at 0.2048 1.151 5.574 7.6 0.3
    X38038_at 0.2372 1.141 5.527 7.4 0.25
    X38255_at 0.1938 1.567 5.521 13.24 0.1
    X40856_at 0.2156 1.184 5.402 7.922 0.7
    X37068_at 0.205 1.207 5.376 8.551 0.8
    X36589_at 0.2176 1.003 5.286 6.182 0.6
    X41661_at 0.2196 1.131 5.269 7.045 0.2
    X41504_s_at 0.2073 1.43 5.262 10.97 1
    X33546_at 0.2075 1.479 5.254 11.91 0.3
    X1767_s_at 0.2045 1.237 5.227 8.307 0.75
    X829_s_at 0.1996 1.302 5.183 8.908 0.95
    X1612_s_at 0.1829 1.346 5.146 9.611 0.45
    X36928_at 0.1925 1.301 5.143 9.323 0.75
    X33415_at 0.1952 1.234 5.084 8.254 0.2
    X37736_at 0.1687 1.25 5.055 8.315 0.3
    X35807_at 0.2006 1.253 5.045 8.453 0.45
    X914_g_at 0.1773 1.135 4.949 7.641 0.6
    X38044_at 0.1962 1.245 4.945 8.388 0.2
    X39545_at 0.1809 1.237 4.899 8.228 0.5
    X36569_at 0.1703 0.8328 4.761 5.009 0.15
    X33102_at 0.1707 1.136 4.726 7.095 0.45
    X39315_at 0.1553 0.9308 4.683 5.578 0.55
    X863_g_at 0.1782 1.316 4.66 10.65 0.4
    X41483_s_at 0.154 1.238 4.618 8.249 0.3
    X36638_at 0.1564 1.194 4.568 8.184 0.25
    X36864_at 0.1688 1.053 4.502 6.438 0.8
    X41106_at 0.1548 0.9481 4.424 5.609 0.2
    X40248_at 0.1546 1.589 4.399 13.57 0.35
    X41385_at 0.1277 1.527 4.334 12.77 0.85
    X32225_at 0.1634 1.498 4.259 11.66 0.2
    X32747_at 0.1191 1.015 4.235 6.037 0.1
    X41741_at 0.1472 1.138 4.233 7.332 0.25
    X33741_at 0.1267 1.172 4.143 7.452 0.1
    X38322_at 0.1386 1.034 4.08 6.872 0.55
    X38406_f_at 0.1338 1.047 3.973 6.573 1
    X1846_at 0.1089 0.9862 3.911 5.898 0.3
    X37043_at 0.1177 1.089 3.863 6.781 0.1
    X1052_s_at 0.107 1.132 3.778 7.207 0.15
    X34820_at 0.1008 1.02 3.722 6.239 0.1
    X40243_at 0.1175 1.525 3.614 12.06 0.1
    X35905_s_at 0.1183 1.568 3.589 12.74 0.15
    X37599_at 0.1078 1.091 3.577 6.717 0.1
    X38391_at 0.07438 0.7246 2.703 4.563 0.1
  • Accuracy: 0.9804
  • tAUC: 0.9804
  • sensitivity: 0.9808
  • specificity: 0.98
  • bootstrap:



hm <- heatMaps(Outcome = theOutcome,data = theData[,c(theOutcome,rownames(selFrequency))],title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.25,cexCol = 0.75,srtCol = 45)


vlist <- rownames(selFrequency)
vlist <- cbind(vlist,vlist)
univ <- univariateRankVariables(variableList = vlist,formula = paste(theOutcome,"~1"),Outcome = theOutcome,data = theData,type = "LOGIT",rankingTest = "zIDI",uniType = "Binary")[,c("controlMean","controlStd","caseMean","caseStd","ROCAUC","WilcoxRes.p")] 

100 : X32780_at


cnames <- colnames(univ);
univ <- cbind(univ,rm[rownames(univ)])
colnames(univ) <- c(cnames,"Frequency")
univ <- univ[order(-univ[,5]),]
pander::pander(univ[1:topFeat,],caption = "Features",round = 4)
Features (continued below)
  controlMean controlStd caseMean caseStd ROCAUC
X37639_at 48.62 28.61 177 85.02 0.9604
X38406_f_at 750.1 403.1 292.2 125 0.9346
X40282_s_at 222.1 165.9 47.58 29.87 0.9252
X37720_at 149.1 36.86 251 63.55 0.9229
X32598_at 71.82 55.15 12.98 14.3 0.9135
X41468_at 32.55 60.89 269.6 181.5 0.9123
X41288_at 154.8 45.52 91.08 31.46 0.9
X32243_g_at 131.5 59.9 62.81 41.11 0.8877
X1767_s_at 74.93 37.34 33.67 17.3 0.8769
X37068_at 0.41 7.08 12.94 14.2 0.8763
X37366_at 32.66 51.84 169.2 123.5 0.876
X40856_at 196.9 83.86 101.1 51.83 0.8727
X39756_g_at 120 84.53 272.7 106.3 0.8719
X36601_at 262.8 163.1 131.4 67.29 0.8712
X39315_at 72.24 34.46 35.75 19.56 0.8631
X33121_g_at 23.07 18.86 60.33 32.02 0.8627
X31444_s_at 1009 308.5 614.2 267.3 0.8625
X769_s_at 912.3 302.2 563.4 215.4 0.8625
X36491_at 16.98 18.46 89.37 95.84 0.8621
X40436_g_at 119.4 78.96 257.4 103.3 0.8617
X34840_at 19.32 14.37 48.58 23.01 0.8581
X36589_at 69.05 94.65 36.1 14.06 0.8563
X33198_at 71.31 23.01 48.65 12.01 0.8562
X36666_at 310.8 172 584.1 213.9 0.8546
X32206_at 45.82 16.8 27 11.43 0.8531
X38028_at 19.19 15.09 3.654 5.269 0.8529
X38044_at 55.59 23.12 26.56 15.14 0.8473
X34775_at 70.15 91.24 252.9 163.5 0.8471
X31538_at 427.4 272.1 820.3 340.4 0.8465
X33137_at 140.8 57.27 76.13 33.83 0.8448
  WilcoxRes.p Frequency
X37639_at 0 0.996
X38406_f_at 0 0.8467
X40282_s_at 0 0.584
X37720_at 0 0.676
X32598_at 0 0.9
X41468_at 0 0.564
X41288_at 0 0.7667
X32243_g_at 0 0.684
X1767_s_at 0 0.7787
X37068_at 0 0.696
X37366_at 0 0.4507
X40856_at 0 0.788
X39756_g_at 0 0.5293
X36601_at 0 0.528
X39315_at 0 0.6987
X33121_g_at 0 0.716
X31444_s_at 0 0.528
X769_s_at 0 0.36
X36491_at 0 0.4813
X40436_g_at 0 0.708
X34840_at 0 0.732
X36589_at 0 0.4627
X33198_at 0 0.668
X36666_at 0 0.4347
X32206_at 0 0.5147
X38028_at 0 0.7907
X38044_at 0 0.656
X34775_at 0 0.184
X31538_at 0 0.2373
X33137_at 0 0.5293