Radar Plots
op <- par(no.readonly = TRUE)
library(fmsb)
par(mfrow = c(1,2),xpd = TRUE,pty = "s",mar = c(1,1,1,1))
mNames <- names(cp$cpuElapsedTimes)
classRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],min(cp$cpuElapsedTimes))
classRanks <- rbind(classRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,max(cp$cpuElapsedTimes)))
classRanks <- as.data.frame(rbind(classRanks,cbind(t(pr$metrics[c("BER","ACC","AUC","SEN","SPE"),mNames]),cp$cpuElapsedTimes)))
colnames(classRanks) <- c("BER","ACC","AUC","SEN","SPE","CPU")
classRanks$BER <- -classRanks$BER
classRanks$CPU <- -classRanks$CPU
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(classRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.5 ,title = "Prediction Model")
legend("topleft",legend = rownames(classRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)
filnames <- c("BSWiMS","LASSO","RF.ref","IDI","t-test","Kendall","mRMR")
filterRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],max(cp$jaccard),min(cp$featsize));
filterRanks <- rbind(filterRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,min(cp$jaccard),max(cp$featsize)));
filterRanks <- as.data.frame(rbind(filterRanks,cbind(t(pr$metrics_filter[c("BER","ACC","AUC","SEN","SPE"),filnames]),cp$jaccard[filnames],cp$featsize[filnames])));
colnames(filterRanks) <- c("BER","ACC","AUC","SEN","SPE","Jaccard","SIZE")
filterRanks$BER <- -filterRanks$BER
filterRanks$SIZE <- -filterRanks$SIZE
colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(filterRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex = 0.6,title = "Filter Method" )
legend("topleft",legend = rownames(filterRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)

detach("package:fmsb", unload=TRUE)
par(mfrow = c(1,1))
par(op)
Feature Analysis
rm <- rowMeans(cp$featureSelectionFrequency)
selFrequency <- cp$featureSelectionFrequency[rm > 0.1,]
gplots::heatmap.2(selFrequency,trace = "none",mar = c(10,10),main = "Features",cexRow = 0.5)

topFeat <- min(ncol(BSWiMSMODEL$bagging$formulaNetwork),30);
gplots::heatmap.2(BSWiMSMODEL$bagging$formulaNetwork[1:topFeat,1:topFeat],trace="none",mar = c(10,10),main = "B:SWiMS Formula Network")

pander::pander(summary(BSWiMSMODEL$bagging$bagged.model,caption="Colon",round = 3))
coefficients:
Table continues below
| X40282_s_at |
-0.0033 |
0.9961 |
0.9967 |
0.9973 |
0.8333 |
| X37639_at |
0.00336 |
1.003 |
1.003 |
1.004 |
0.8725 |
| X41468_at |
0.001861 |
1.001 |
1.002 |
1.002 |
0.8529 |
| X40436_g_at |
0.002672 |
1.002 |
1.003 |
1.003 |
0.7745 |
| X32243_g_at |
-0.00269 |
0.9967 |
0.9973 |
0.9979 |
0.8137 |
| X37366_at |
0.001827 |
1.001 |
1.002 |
1.002 |
0.8431 |
| X38634_at |
-0.009618 |
0.9881 |
0.9904 |
0.9927 |
0.8333 |
| X31444_s_at |
-0.0004967 |
0.9994 |
0.9995 |
0.9996 |
0.7843 |
| X2041_i_at |
-0.02004 |
0.975 |
0.9802 |
0.9853 |
0.7647 |
| X33121_g_at |
0.006488 |
1.005 |
1.007 |
1.008 |
0.7941 |
| X41288_at |
-0.00531 |
0.9933 |
0.9947 |
0.9961 |
0.8137 |
| X34840_at |
0.005391 |
1.004 |
1.005 |
1.007 |
0.8039 |
| X36491_at |
0.003699 |
1.003 |
1.004 |
1.005 |
0.8039 |
| X216_at |
-0.0006353 |
0.9992 |
0.9994 |
0.9995 |
0.7843 |
| X39939_at |
-0.009762 |
0.9875 |
0.9903 |
0.9931 |
0.7941 |
| X32598_at |
-0.002882 |
0.9963 |
0.9971 |
0.998 |
0.8824 |
| X38057_at |
-0.0008888 |
0.9988 |
0.9991 |
0.9994 |
0.7647 |
| X38087_s_at |
-0.006285 |
0.9918 |
0.9937 |
0.9957 |
0.7353 |
| X39756_g_at |
0.0008522 |
1.001 |
1.001 |
1.001 |
0.7941 |
| X37720_at |
0.002832 |
1.002 |
1.003 |
1.004 |
0.8431 |
| X33198_at |
-0.001194 |
0.9984 |
0.9988 |
0.9992 |
0.7941 |
| X769_s_at |
-0.0003782 |
0.9995 |
0.9996 |
0.9997 |
0.7745 |
| X38026_at |
-0.001195 |
0.9984 |
0.9988 |
0.9992 |
0.6667 |
| X36814_at |
-0.002217 |
0.9971 |
0.9978 |
0.9985 |
0.7451 |
| X575_s_at |
0.0004621 |
1 |
1 |
1.001 |
0.8333 |
| X38028_at |
-0.01366 |
0.9819 |
0.9864 |
0.991 |
0.8137 |
| X32786_at |
0.00211 |
1.001 |
1.002 |
1.003 |
0.7255 |
| X36601_at |
-0.0002904 |
0.9996 |
0.9997 |
0.9998 |
0.8333 |
| X556_s_at |
-0.001872 |
0.9975 |
0.9981 |
0.9988 |
0.7843 |
| X1980_s_at |
0.000532 |
1 |
1.001 |
1.001 |
0.7353 |
| X38038_at |
-0.0007719 |
0.999 |
0.9992 |
0.9995 |
0.6863 |
| X38255_at |
0.003448 |
1.002 |
1.003 |
1.005 |
0.6569 |
| X40856_at |
-0.0005574 |
0.9992 |
0.9994 |
0.9996 |
0.8431 |
| X37068_at |
0.0134 |
1.009 |
1.013 |
1.018 |
0.8039 |
| X36589_at |
-0.002641 |
0.9964 |
0.9974 |
0.9983 |
0.7647 |
| X41661_at |
0.00364 |
1.002 |
1.004 |
1.005 |
0.6078 |
| X41504_s_at |
-0.00484 |
0.9934 |
0.9952 |
0.997 |
0.7353 |
| X33546_at |
-0.008432 |
0.9885 |
0.9916 |
0.9947 |
0.5784 |
| X1767_s_at |
-0.003082 |
0.9958 |
0.9969 |
0.9981 |
0.7941 |
| X829_s_at |
-0.001939 |
0.9973 |
0.9981 |
0.9988 |
0.6863 |
| X1612_s_at |
0.0001855 |
1 |
1 |
1 |
0.5882 |
| X36928_at |
0.003256 |
1.002 |
1.003 |
1.005 |
0.6961 |
| X33415_at |
0.0005804 |
1 |
1.001 |
1.001 |
0.7353 |
| X37736_at |
-0.003497 |
0.9952 |
0.9965 |
0.9979 |
0.6275 |
| X35807_at |
-0.002879 |
0.996 |
0.9971 |
0.9982 |
0.6765 |
| X914_g_at |
0.007999 |
1.005 |
1.008 |
1.011 |
0.7941 |
| X38044_at |
-0.0009023 |
0.9987 |
0.9991 |
0.9995 |
0.8235 |
| X39545_at |
-0.003826 |
0.9947 |
0.9962 |
0.9977 |
0.7843 |
| X36569_at |
-0.0003228 |
0.9995 |
0.9997 |
0.9998 |
0.7255 |
| X33102_at |
-0.002996 |
0.9958 |
0.997 |
0.9982 |
0.6471 |
| X39315_at |
-0.002527 |
0.9964 |
0.9975 |
0.9985 |
0.7745 |
| X863_g_at |
-0.008072 |
0.9886 |
0.992 |
0.9953 |
0.6961 |
| X41483_s_at |
0.00012 |
1 |
1 |
1 |
0.5882 |
| X36638_at |
0.0003602 |
1 |
1 |
1.001 |
0.549 |
| X36864_at |
-0.01062 |
0.9849 |
0.9894 |
0.994 |
0.7451 |
| X41106_at |
0.0009226 |
1.001 |
1.001 |
1.001 |
0.6961 |
| X40248_at |
-0.01001 |
0.9856 |
0.99 |
0.9945 |
0.598 |
| X41385_at |
-0.006293 |
0.9909 |
0.9937 |
0.9966 |
0.7451 |
| X32225_at |
0.003609 |
1.002 |
1.004 |
1.005 |
0.6471 |
| X32747_at |
-0.0001819 |
0.9997 |
0.9998 |
0.9999 |
0.6765 |
| X41741_at |
0.0003762 |
1 |
1 |
1.001 |
0.5196 |
| X33741_at |
-0.001983 |
0.9971 |
0.998 |
0.999 |
0.6373 |
| X38322_at |
-0.0008333 |
0.9988 |
0.9992 |
0.9996 |
0.7157 |
| X38406_f_at |
-0.000243 |
0.9996 |
0.9998 |
0.9999 |
0.8627 |
| X1846_at |
0.003726 |
1.002 |
1.004 |
1.006 |
0.6373 |
| X37043_at |
-8.14e-05 |
0.9999 |
0.9999 |
1 |
0.7255 |
| X1052_s_at |
0.0001609 |
1 |
1 |
1 |
0.6569 |
| X34820_at |
-7.622e-05 |
0.9999 |
0.9999 |
1 |
0.7157 |
| X40243_at |
0.0003885 |
1 |
1 |
1.001 |
0.5392 |
| X35905_s_at |
2.711e-05 |
1 |
1 |
1 |
0.5392 |
| X37599_at |
-0.0005311 |
0.9992 |
0.9995 |
0.9998 |
0.7059 |
| X38391_at |
-0.0007015 |
0.9988 |
0.9993 |
0.9998 |
0.598 |
Table continues below
| X40282_s_at |
0.7275 |
0.9407 |
0.8315 |
0.7264 |
0.9406 |
| X37639_at |
0.6897 |
0.9294 |
0.8727 |
0.6876 |
0.9296 |
| X41468_at |
0.7034 |
0.9377 |
0.8538 |
0.7026 |
0.9382 |
| X40436_g_at |
0.8 |
0.9196 |
0.7746 |
0.7983 |
0.9198 |
| X32243_g_at |
0.7394 |
0.9174 |
0.8131 |
0.7391 |
0.9174 |
| X37366_at |
0.7384 |
0.9107 |
0.845 |
0.7377 |
0.9112 |
| X38634_at |
0.79 |
0.9345 |
0.8315 |
0.7893 |
0.9345 |
| X31444_s_at |
0.7706 |
0.9304 |
0.7842 |
0.7704 |
0.9304 |
| X2041_i_at |
0.8314 |
0.9294 |
0.7623 |
0.8301 |
0.9291 |
| X33121_g_at |
0.8008 |
0.9154 |
0.7958 |
0.7995 |
0.9155 |
| X41288_at |
0.7868 |
0.9245 |
0.8131 |
0.7856 |
0.9243 |
| X34840_at |
0.7868 |
0.9208 |
0.8038 |
0.786 |
0.9207 |
| X36491_at |
0.7804 |
0.9127 |
0.805 |
0.7802 |
0.9129 |
| X216_at |
0.8126 |
0.921 |
0.7827 |
0.8129 |
0.921 |
| X39939_at |
0.7825 |
0.913 |
0.7931 |
0.7816 |
0.9128 |
| X32598_at |
0.799 |
0.9191 |
0.8808 |
0.7978 |
0.9187 |
| X38057_at |
0.6863 |
0.8627 |
0.7635 |
0.6831 |
0.8627 |
| X38087_s_at |
0.8364 |
0.9288 |
0.7331 |
0.8363 |
0.9286 |
| X39756_g_at |
0.8028 |
0.9066 |
0.7946 |
0.8015 |
0.9065 |
| X37720_at |
0.8279 |
0.9319 |
0.8435 |
0.827 |
0.932 |
| X33198_at |
0.7843 |
0.8824 |
0.7938 |
0.7838 |
0.8821 |
| X769_s_at |
0.8155 |
0.9127 |
0.7742 |
0.8148 |
0.9125 |
| X38026_at |
0.8456 |
0.9289 |
0.6646 |
0.8458 |
0.929 |
| X36814_at |
0.8137 |
0.9216 |
0.7442 |
0.8123 |
0.9212 |
| X575_s_at |
0.7876 |
0.8856 |
0.8342 |
0.7868 |
0.8859 |
| X38028_at |
0.8077 |
0.9101 |
0.8112 |
0.8073 |
0.9099 |
| X32786_at |
0.8446 |
0.9441 |
0.7254 |
0.8433 |
0.9441 |
| X36601_at |
0.7569 |
0.8814 |
0.8323 |
0.7553 |
0.881 |
| X556_s_at |
0.8394 |
0.9216 |
0.7831 |
0.8388 |
0.9215 |
| X1980_s_at |
0.8219 |
0.9248 |
0.7354 |
0.8219 |
0.9248 |
| X38038_at |
0.7941 |
0.9078 |
0.685 |
0.795 |
0.9078 |
| X38255_at |
0.8676 |
0.9363 |
0.6542 |
0.8673 |
0.9362 |
| X40856_at |
0.7864 |
0.8908 |
0.8423 |
0.7866 |
0.8909 |
| X37068_at |
0.8529 |
0.9271 |
0.8035 |
0.8517 |
0.9269 |
| X36589_at |
0.7892 |
0.8734 |
0.7642 |
0.7877 |
0.8732 |
| X41661_at |
0.8333 |
0.9412 |
0.6038 |
0.8315 |
0.9408 |
| X41504_s_at |
0.8711 |
0.9377 |
0.7346 |
0.8718 |
0.9381 |
| X33546_at |
0.8611 |
0.933 |
0.5773 |
0.8605 |
0.9329 |
| X1767_s_at |
0.834 |
0.9052 |
0.7923 |
0.8344 |
0.9051 |
| X829_s_at |
0.8478 |
0.9345 |
0.6854 |
0.8482 |
0.9347 |
| X1612_s_at |
0.8388 |
0.9074 |
0.5885 |
0.8382 |
0.9073 |
| X36928_at |
0.8595 |
0.9281 |
0.6969 |
0.8595 |
0.928 |
| X33415_at |
0.8431 |
0.924 |
0.7358 |
0.8427 |
0.9242 |
| X37736_at |
0.866 |
0.9118 |
0.6265 |
0.8664 |
0.9118 |
| X35807_at |
0.8301 |
0.9063 |
0.6738 |
0.8294 |
0.906 |
| X914_g_at |
0.8538 |
0.9199 |
0.7965 |
0.8534 |
0.92 |
| X38044_at |
0.848 |
0.902 |
0.8231 |
0.8476 |
0.9017 |
| X39545_at |
0.8147 |
0.8922 |
0.7842 |
0.8137 |
0.8916 |
| X36569_at |
0.7974 |
0.8856 |
0.7238 |
0.7959 |
0.885 |
| X33102_at |
0.8453 |
0.8998 |
0.645 |
0.8464 |
0.9001 |
| X39315_at |
0.8556 |
0.9225 |
0.7742 |
0.8555 |
0.9223 |
| X863_g_at |
0.837 |
0.9081 |
0.6946 |
0.836 |
0.9079 |
| X41483_s_at |
0.8611 |
0.9199 |
0.5877 |
0.8608 |
0.9199 |
| X36638_at |
0.8667 |
0.9333 |
0.5481 |
0.8667 |
0.9332 |
| X36864_at |
0.8474 |
0.9136 |
0.7442 |
0.8475 |
0.9136 |
| X41106_at |
0.7917 |
0.8407 |
0.6985 |
0.7925 |
0.8416 |
| X40248_at |
0.8655 |
0.9104 |
0.5977 |
0.8659 |
0.9104 |
| X41385_at |
0.8668 |
0.9198 |
0.7438 |
0.8666 |
0.9196 |
| X32225_at |
0.8505 |
0.9338 |
0.6458 |
0.8506 |
0.934 |
| X32747_at |
0.8627 |
0.9265 |
0.6762 |
0.8635 |
0.9269 |
| X41741_at |
0.8725 |
0.9294 |
0.5185 |
0.8727 |
0.9293 |
| X33741_at |
0.8775 |
0.9069 |
0.6373 |
0.8769 |
0.9067 |
| X38322_at |
0.8209 |
0.8939 |
0.7127 |
0.8197 |
0.8935 |
| X38406_f_at |
0.8706 |
0.9284 |
0.8619 |
0.8703 |
0.9284 |
| X1846_at |
0.8627 |
0.9069 |
0.6377 |
0.8624 |
0.9065 |
| X37043_at |
0.8824 |
0.9216 |
0.7235 |
0.8808 |
0.9212 |
| X1052_s_at |
0.866 |
0.9118 |
0.6573 |
0.866 |
0.9123 |
| X34820_at |
0.848 |
0.8922 |
0.7135 |
0.8475 |
0.8921 |
| X40243_at |
0.8725 |
0.951 |
0.5346 |
0.8727 |
0.9508 |
| X35905_s_at |
0.8725 |
0.9314 |
0.5388 |
0.8727 |
0.9319 |
| X37599_at |
0.902 |
0.9314 |
0.7038 |
0.901 |
0.9315 |
| X38391_at |
0.8088 |
0.8137 |
0.5973 |
0.8098 |
0.8144 |
| X40282_s_at |
0.5345 |
1.64 |
11.44 |
16.21 |
1 |
| X37639_at |
0.5108 |
1.438 |
11.38 |
11.82 |
1 |
| X41468_at |
0.4839 |
1.571 |
9.98 |
12.89 |
1 |
| X40436_g_at |
0.4059 |
1.535 |
8.708 |
12.9 |
1 |
| X32243_g_at |
0.3652 |
1.414 |
8.517 |
11.1 |
0.95 |
| X37366_at |
0.364 |
1.432 |
8.331 |
11.82 |
0.95 |
| X38634_at |
0.3566 |
1.436 |
8.185 |
10.83 |
0.95 |
| X31444_s_at |
0.3556 |
1.414 |
7.625 |
10.43 |
0.5 |
| X2041_i_at |
0.3313 |
1.39 |
7.476 |
10.97 |
0.75 |
| X33121_g_at |
0.3312 |
1.322 |
7.392 |
9.854 |
0.95 |
| X41288_at |
0.3365 |
1.462 |
7.343 |
11.65 |
1 |
| X34840_at |
0.31 |
1.306 |
7.267 |
9.216 |
0.6 |
| X36491_at |
0.323 |
1.467 |
7.242 |
11.39 |
0.5 |
| X216_at |
0.2974 |
1.331 |
6.832 |
9.521 |
0.85 |
| X39939_at |
0.2882 |
1.274 |
6.735 |
8.564 |
0.8 |
| X32598_at |
0.2833 |
1.197 |
6.689 |
8.769 |
1 |
| X38057_at |
0.2565 |
1.288 |
6.344 |
9.177 |
0.15 |
| X38087_s_at |
0.2702 |
1.438 |
6.32 |
11.91 |
0.95 |
| X39756_g_at |
0.2683 |
1.334 |
6.317 |
9.38 |
0.85 |
| X37720_at |
0.2625 |
1.063 |
6.212 |
8.616 |
1 |
| X33198_at |
0.2519 |
1.334 |
6.099 |
9.295 |
0.2 |
| X769_s_at |
0.2689 |
1.192 |
6.057 |
8.124 |
0.55 |
| X38026_at |
0.2138 |
1.111 |
6.028 |
6.978 |
0.2 |
| X36814_at |
0.261 |
1.647 |
5.946 |
15.45 |
0.1 |
| X575_s_at |
0.2418 |
1.126 |
5.894 |
7.345 |
0.15 |
| X38028_at |
0.2264 |
1.372 |
5.802 |
10.37 |
0.9 |
| X32786_at |
0.2391 |
1.404 |
5.74 |
10.49 |
1 |
| X36601_at |
0.2141 |
1.106 |
5.678 |
7.097 |
0.5 |
| X556_s_at |
0.231 |
1.321 |
5.586 |
9.222 |
0.65 |
| X1980_s_at |
0.2048 |
1.151 |
5.574 |
7.6 |
0.3 |
| X38038_at |
0.2372 |
1.141 |
5.527 |
7.4 |
0.25 |
| X38255_at |
0.1938 |
1.567 |
5.521 |
13.24 |
0.1 |
| X40856_at |
0.2156 |
1.184 |
5.402 |
7.922 |
0.7 |
| X37068_at |
0.205 |
1.207 |
5.376 |
8.551 |
0.8 |
| X36589_at |
0.2176 |
1.003 |
5.286 |
6.182 |
0.6 |
| X41661_at |
0.2196 |
1.131 |
5.269 |
7.045 |
0.2 |
| X41504_s_at |
0.2073 |
1.43 |
5.262 |
10.97 |
1 |
| X33546_at |
0.2075 |
1.479 |
5.254 |
11.91 |
0.3 |
| X1767_s_at |
0.2045 |
1.237 |
5.227 |
8.307 |
0.75 |
| X829_s_at |
0.1996 |
1.302 |
5.183 |
8.908 |
0.95 |
| X1612_s_at |
0.1829 |
1.346 |
5.146 |
9.611 |
0.45 |
| X36928_at |
0.1925 |
1.301 |
5.143 |
9.323 |
0.75 |
| X33415_at |
0.1952 |
1.234 |
5.084 |
8.254 |
0.2 |
| X37736_at |
0.1687 |
1.25 |
5.055 |
8.315 |
0.3 |
| X35807_at |
0.2006 |
1.253 |
5.045 |
8.453 |
0.45 |
| X914_g_at |
0.1773 |
1.135 |
4.949 |
7.641 |
0.6 |
| X38044_at |
0.1962 |
1.245 |
4.945 |
8.388 |
0.2 |
| X39545_at |
0.1809 |
1.237 |
4.899 |
8.228 |
0.5 |
| X36569_at |
0.1703 |
0.8328 |
4.761 |
5.009 |
0.15 |
| X33102_at |
0.1707 |
1.136 |
4.726 |
7.095 |
0.45 |
| X39315_at |
0.1553 |
0.9308 |
4.683 |
5.578 |
0.55 |
| X863_g_at |
0.1782 |
1.316 |
4.66 |
10.65 |
0.4 |
| X41483_s_at |
0.154 |
1.238 |
4.618 |
8.249 |
0.3 |
| X36638_at |
0.1564 |
1.194 |
4.568 |
8.184 |
0.25 |
| X36864_at |
0.1688 |
1.053 |
4.502 |
6.438 |
0.8 |
| X41106_at |
0.1548 |
0.9481 |
4.424 |
5.609 |
0.2 |
| X40248_at |
0.1546 |
1.589 |
4.399 |
13.57 |
0.35 |
| X41385_at |
0.1277 |
1.527 |
4.334 |
12.77 |
0.85 |
| X32225_at |
0.1634 |
1.498 |
4.259 |
11.66 |
0.2 |
| X32747_at |
0.1191 |
1.015 |
4.235 |
6.037 |
0.1 |
| X41741_at |
0.1472 |
1.138 |
4.233 |
7.332 |
0.25 |
| X33741_at |
0.1267 |
1.172 |
4.143 |
7.452 |
0.1 |
| X38322_at |
0.1386 |
1.034 |
4.08 |
6.872 |
0.55 |
| X38406_f_at |
0.1338 |
1.047 |
3.973 |
6.573 |
1 |
| X1846_at |
0.1089 |
0.9862 |
3.911 |
5.898 |
0.3 |
| X37043_at |
0.1177 |
1.089 |
3.863 |
6.781 |
0.1 |
| X1052_s_at |
0.107 |
1.132 |
3.778 |
7.207 |
0.15 |
| X34820_at |
0.1008 |
1.02 |
3.722 |
6.239 |
0.1 |
| X40243_at |
0.1175 |
1.525 |
3.614 |
12.06 |
0.1 |
| X35905_s_at |
0.1183 |
1.568 |
3.589 |
12.74 |
0.15 |
| X37599_at |
0.1078 |
1.091 |
3.577 |
6.717 |
0.1 |
| X38391_at |
0.07438 |
0.7246 |
2.703 |
4.563 |
0.1 |
- Accuracy: 0.9804
- tAUC: 0.9804
- sensitivity: 0.9808
- specificity: 0.98
bootstrap:
hm <- heatMaps(Outcome = theOutcome,data = theData[,c(theOutcome,rownames(selFrequency))],title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.25,cexCol = 0.75,srtCol = 45)

vlist <- rownames(selFrequency)
vlist <- cbind(vlist,vlist)
univ <- univariateRankVariables(variableList = vlist,formula = paste(theOutcome,"~1"),Outcome = theOutcome,data = theData,type = "LOGIT",rankingTest = "zIDI",uniType = "Binary")[,c("controlMean","controlStd","caseMean","caseStd","ROCAUC","WilcoxRes.p")]
100 : X32780_at
cnames <- colnames(univ);
univ <- cbind(univ,rm[rownames(univ)])
colnames(univ) <- c(cnames,"Frequency")
univ <- univ[order(-univ[,5]),]
pander::pander(univ[1:topFeat,],caption = "Features",round = 4)
Features (continued below)
| X37639_at |
48.62 |
28.61 |
177 |
85.02 |
0.9604 |
| X38406_f_at |
750.1 |
403.1 |
292.2 |
125 |
0.9346 |
| X40282_s_at |
222.1 |
165.9 |
47.58 |
29.87 |
0.9252 |
| X37720_at |
149.1 |
36.86 |
251 |
63.55 |
0.9229 |
| X32598_at |
71.82 |
55.15 |
12.98 |
14.3 |
0.9135 |
| X41468_at |
32.55 |
60.89 |
269.6 |
181.5 |
0.9123 |
| X41288_at |
154.8 |
45.52 |
91.08 |
31.46 |
0.9 |
| X32243_g_at |
131.5 |
59.9 |
62.81 |
41.11 |
0.8877 |
| X1767_s_at |
74.93 |
37.34 |
33.67 |
17.3 |
0.8769 |
| X37068_at |
0.41 |
7.08 |
12.94 |
14.2 |
0.8763 |
| X37366_at |
32.66 |
51.84 |
169.2 |
123.5 |
0.876 |
| X40856_at |
196.9 |
83.86 |
101.1 |
51.83 |
0.8727 |
| X39756_g_at |
120 |
84.53 |
272.7 |
106.3 |
0.8719 |
| X36601_at |
262.8 |
163.1 |
131.4 |
67.29 |
0.8712 |
| X39315_at |
72.24 |
34.46 |
35.75 |
19.56 |
0.8631 |
| X33121_g_at |
23.07 |
18.86 |
60.33 |
32.02 |
0.8627 |
| X31444_s_at |
1009 |
308.5 |
614.2 |
267.3 |
0.8625 |
| X769_s_at |
912.3 |
302.2 |
563.4 |
215.4 |
0.8625 |
| X36491_at |
16.98 |
18.46 |
89.37 |
95.84 |
0.8621 |
| X40436_g_at |
119.4 |
78.96 |
257.4 |
103.3 |
0.8617 |
| X34840_at |
19.32 |
14.37 |
48.58 |
23.01 |
0.8581 |
| X36589_at |
69.05 |
94.65 |
36.1 |
14.06 |
0.8563 |
| X33198_at |
71.31 |
23.01 |
48.65 |
12.01 |
0.8562 |
| X36666_at |
310.8 |
172 |
584.1 |
213.9 |
0.8546 |
| X32206_at |
45.82 |
16.8 |
27 |
11.43 |
0.8531 |
| X38028_at |
19.19 |
15.09 |
3.654 |
5.269 |
0.8529 |
| X38044_at |
55.59 |
23.12 |
26.56 |
15.14 |
0.8473 |
| X34775_at |
70.15 |
91.24 |
252.9 |
163.5 |
0.8471 |
| X31538_at |
427.4 |
272.1 |
820.3 |
340.4 |
0.8465 |
| X33137_at |
140.8 |
57.27 |
76.13 |
33.83 |
0.8448 |
| X37639_at |
0 |
0.996 |
| X38406_f_at |
0 |
0.8467 |
| X40282_s_at |
0 |
0.584 |
| X37720_at |
0 |
0.676 |
| X32598_at |
0 |
0.9 |
| X41468_at |
0 |
0.564 |
| X41288_at |
0 |
0.7667 |
| X32243_g_at |
0 |
0.684 |
| X1767_s_at |
0 |
0.7787 |
| X37068_at |
0 |
0.696 |
| X37366_at |
0 |
0.4507 |
| X40856_at |
0 |
0.788 |
| X39756_g_at |
0 |
0.5293 |
| X36601_at |
0 |
0.528 |
| X39315_at |
0 |
0.6987 |
| X33121_g_at |
0 |
0.716 |
| X31444_s_at |
0 |
0.528 |
| X769_s_at |
0 |
0.36 |
| X36491_at |
0 |
0.4813 |
| X40436_g_at |
0 |
0.708 |
| X34840_at |
0 |
0.732 |
| X36589_at |
0 |
0.4627 |
| X33198_at |
0 |
0.668 |
| X36666_at |
0 |
0.4347 |
| X32206_at |
0 |
0.5147 |
| X38028_at |
0 |
0.7907 |
| X38044_at |
0 |
0.656 |
| X34775_at |
0 |
0.184 |
| X31538_at |
0 |
0.2373 |
| X33137_at |
0 |
0.5293 |