芯片数据分析流程有些复杂,但使用 R 和 Bioconductor包进行分析就简单多了。
本教程将一步一步的展示如何安装 R 和 Bioconductor,通过 GEO数据库下载芯片数据,对数据进行标准化,然后对数据进行质控检查,最后查找差异表达的基因。
# default 是此段代码的命名
# 本段代码是原模板文件自带
#knitr::opts_chunk$set(echo = TRUE)
options(repos=structure(c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")))
# download the BioC installation routines
source("http://bioconductor.org/biocLite.R")
# Set mirror website
options(BioC_mirror="http://mirrors.ustc.edu.cn/bioc/")
# install the core packages
biocLite()
# install the GEO libraries
#biocLite("GEOquery") # hide
#biocLite("ggplot2") # hide
如果你没有管理员权限,你需要将这些包安装到你个人库目录中。安装 Bioconductor 需要一段时间,GEOquery 包也需要安装,GEOquery 是 NCBI 存储标准化的转录组数据的基因表达综合数据库 GEO 的接口程序。
Download the dataset from GEO
library(GEOquery)
## Loading required package: Biobase
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## anyDuplicated, append, as.data.frame, cbind, colMeans,
## colnames, colSums, do.call, duplicated, eval, evalq, Filter,
## Find, get, grep, grepl, intersect, is.unsorted, lapply,
## lengths, Map, mapply, match, mget, order, paste, pmax,
## pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce,
## rowMeans, rownames, rowSums, sapply, setdiff, sort, table,
## tapply, union, unique, unsplit, which, which.max, which.min
## Welcome to Bioconductor
##
## Vignettes contain introductory material; view with
## 'browseVignettes()'. To cite Bioconductor, see
## 'citation("Biobase")', and for packages 'citation("pkgname")'.
## Setting options('download.file.method.GEOquery'='auto')
## Setting options('GEOquery.inmemory.gpl'=FALSE)
#getGEOSuppFiles("GSE53307") #hide 对于新数据集,此处需替换
untar("GSE53307/GSE53307_RAW.tar", exdir="data")
cels <- list.files("data/",pattern="[gz]")
sapply(paste("data", cels, sep="/"), gunzip,overwrite=TRUE) #gunzip 后面可以跟参数
## data/GSM1289208_BS2012070740.CEL.gz data/GSM1289209_BS2012070741.CEL.gz
## 5359898 5359771
## data/GSM1289210_BS2012070742.CEL.gz data/GSM1289211_BS2012070743.CEL.gz
## 5360195 5360059
## data/GSM1289212_BS2012070744.CEL.gz data/GSM1289213_BS2012070745.CEL.gz
## 5360499 5360538
## data/GSM1289214_BS2012070746.CEL.gz data/GSM1289215_BS2012070747.CEL.gz
## 5360398 5360138
## data/GSM1289216_BS2012070748.CEL.gz data/GSM1289217_BS2012070749.CEL.gz
## 5359902 5359755
## data/GSM1289218_BS2012070750.CEL.gz data/GSM1289219_BS2012070751.CEL.gz
## 5360099 5359847
cels
## [1] "GSM1289208_BS2012070740.CEL.gz" "GSM1289209_BS2012070741.CEL.gz"
## [3] "GSM1289210_BS2012070742.CEL.gz" "GSM1289211_BS2012070743.CEL.gz"
## [5] "GSM1289212_BS2012070744.CEL.gz" "GSM1289213_BS2012070745.CEL.gz"
## [7] "GSM1289214_BS2012070746.CEL.gz" "GSM1289215_BS2012070747.CEL.gz"
## [9] "GSM1289216_BS2012070748.CEL.gz" "GSM1289217_BS2012070749.CEL.gz"
## [11] "GSM1289218_BS2012070750.CEL.gz" "GSM1289219_BS2012070751.CEL.gz"
DOS下利用 dir > XX.txt命令生成 文件列表,然后导入excel中进行处理,只留下文件名单列,文本文件。
use excel to add the group name ,3列 Name,FileName,Target, Name 和 FileName 可以同名,Targe为分组说明
# The simpleaffy package provides routines for handling CEL files including normalisation and loading data with sample information. We are going to load the data into an R object called ‘celfiles’
##biocLite("BiocGenerics")
##biocLite("parallel")
##biocLite("Biobase")
#biocLite("affy") # hide
#biocLite("genefilter") # hide
#biocLite("simpleaffy") # hide
#biocLite("RSQLite") # hide
##biocLite("gcrma")
library(genefilter)
library(simpleaffy)
celfiles <- read.affy(covdesc="3.txt", path="data")
celfiles
## AffyBatch object
## size of arrays=732x732 features (22 kb)
## cdf=Mouse430A_2 (22690 affyids)
## number of samples=12
## number of genes=22690
## annotation=mouse430a2
## notes=
#biocLite("mouse430a2cdf") # hide
library(mouse430a2cdf)
AffyBatch object
size of arrays=1164x1164 features (12 kb)
cdf=HG-U133_Plus_2 (54675 affyids)
number of samples=12
number of genes=54675
annotation=hgu133plus2
notes=
Now we can normalise the data. As with the data deposited in GEO we are going to use the GC-RMA algorithm. If this is the first time you have run it, it will download additional files during the process.
celfiles.gcrma <- gcrma(celfiles)
## Adjusting for optical effect............Done.
## Computing affinities
## Loading required package: AnnotationDbi
## Loading required package: stats4
## Loading required package: IRanges
## Loading required package: S4Vectors
##
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:base':
##
## expand.grid
##
## Attaching package: 'IRanges'
## The following object is masked from 'package:simpleaffy':
##
## members
## .Done.
## Adjusting for non-specific binding............Done.
## Normalizing
## Calculating Expression
celfiles.gcrma
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 22690 features, 12 samples
## element names: exprs
## protocolData
## sampleNames: GSM1289208_BS2012070740.CEL
## GSM1289209_BS2012070741.CEL ... GSM1289219_BS2012070751.CEL
## (12 total)
## varLabels: ScanDate
## varMetadata: labelDescription
## phenoData
## sampleNames: GSM1289208_BS2012070740.CEL
## GSM1289209_BS2012070741.CEL ... GSM1289219_BS2012070751.CEL
## (12 total)
## varLabels: sample FileName Target
## varMetadata: labelDescription
## featureData: none
## experimentData: use 'experimentData(object)'
## Annotation: mouse430a2
write.exprs(celfiles.gcrma,file="NormalizedData.txt")
eset <- exprs(celfiles.gcrma)
# load colour libraries
library("RColorBrewer")
# set colour palette
cols <- brewer.pal(8, "Set1")
# plot a boxplot of unnormalised intensity values
boxplot(celfiles, col=cols)
# plot a boxplot of normalised intensity values, affyPLM is required to interrogate celfiles.gcrma
library("affyPLM")
## Loading required package: preprocessCore
boxplot(celfiles.gcrma, col=cols)
# the boxplots are somewhat skewed by the normalisation algorithm
# and it is often more informative to look at density plots
# Plot a density vs log intensity histogram for the unnormalised data
hist(celfiles, col=cols)
# Plot a density vs log intensity histogram for the normalised data
hist(celfiles.gcrma, col=cols)
To take a closer look at the situation on a per-chip level we can use affyPLM. affyPLM allows us to visualise statistical characteristics of the CEL files.
# Perform probe-level metric calculations on the CEL files:
celfiles.qc <- fitPLM(celfiles)
# Create an image of GSM24662.CEL:
image(celfiles.qc, which=1, add.legend=TRUE)
# Create an image of GSM524665.CEL
# There is a spatial artifact present
image(celfiles.qc, which=10, add.legend=TRUE)
# affyPLM also provides more informative boxplots
# RLE (Relative Log Expression) plots should have
# values close to zero. GSM524665.CEL is an outlier
RLE(celfiles.qc, main="RLE",col=cols)
# We can also use NUSE (Normalised Unscaled Standard Errors).
# The median standard error should be 1 for most genes.
# GSM524665.CEL appears to be an outlier on this plot too
NUSE(celfiles.qc, main="NUSE",col=cols)
#We can also look at the relationships between the samples using heirarchical clustering:
eset <- exprs(celfiles.gcrma)
distance <- dist(t(eset),method="maximum")
clusters <- hclust(distance)
plot(clusters)
## 此处\* 代表斜体 \*\*代表加粗 \*\*\* 代表加粗加斜
Now we have looked at the data, we can go on to analyse it. The first stage of analysis is to filter out uninformative data such as control probesets and other internal controls as well as removing genes with low variance, that would be unlikely to pass statistical tests for differential expression, or are expressed uniformly close to background detection levels. The modifiers to nsFilter below tell nsFilter not to remove probesets without Entrez Gene identifiers, or have duplicated Entrez Gene identifiers.
celfiles.filtered <- nsFilter(celfiles.gcrma, require.entrez=FALSE, remove.dupEntrez=FALSE)
celfiles.filtered $ filter.log
## $numLowVar
## [1] 11313
##
## $feature.exclude
## [1] 64
From this we conclude 11,313 probesets have been removed for reasons of low variance, and 64 control probesets have been removed as well.
Now we have a filtered dataset, we can send the information to limma for differential gene expression analysis. First of all we need to extract information about the samples
samples <- celfiles.gcrma$Target
# check the results of this samples
samples
## [1] "SubIng" "SubIng" "SubIng" "VisEpi" "VisEpi" "VisEpi" "SubAxi"
## [8] "SubAxi" "SubAxi" "VisMes" "VisMes" "VisMes"
# convert into factors
samples <- as.factor(samples)
# check factors have been assigned
samples
## [1] SubIng SubIng SubIng VisEpi VisEpi VisEpi SubAxi SubAxi SubAxi VisMes
## [11] VisMes VisMes
## Levels: SubAxi SubIng VisEpi VisMes
# set up the experimental design
design <- model.matrix(~0 + samples)
colnames(design) <- c("SubIng", "VisEpi","SubAxi","VisMes")
# inspect the experiment design
design
## SubIng VisEpi SubAxi VisMes
## 1 0 1 0 0
## 2 0 1 0 0
## 3 0 1 0 0
## 4 0 0 1 0
## 5 0 0 1 0
## 6 0 0 1 0
## 7 1 0 0 0
## 8 1 0 0 0
## 9 1 0 0 0
## 10 0 0 0 1
## 11 0 0 0 1
## 12 0 0 0 1
## attr(,"assign")
## [1] 1 1 1 1
## attr(,"contrasts")
## attr(,"contrasts")$samples
## [1] "contr.treatment"
At this point we have normalised filtered data, and a description of the data and the samples and experimental design. This can be fed into limma for analysis.
library(limma)
##
## Attaching package: 'limma'
## The following object is masked from 'package:BiocGenerics':
##
## plotMA
#target <- readTargets("3.txt")
# Reads targets information from file 'affy_targets.txt' and assigns it to targets frame.
# fit the linear model to the filtered expression set
fit <- lmFit(exprs(celfiles.filtered$eset), design)
# set up a contrast matrix to compare tissues v cell line
contrast.matrix <- makeContrasts(VisEpi_SubIng = VisEpi-SubIng, VisMes_SubIng=VisMes-SubIng,VisEpi_SubAxi=VisEpi-SubAxi,VisMes_SubAxi=VisMes-SubAxi,levels=design)
# check the contrast matrix
contrast.matrix
## Contrasts
## Levels VisEpi_SubIng VisMes_SubIng VisEpi_SubAxi VisMes_SubAxi
## SubIng -1 -1 0 0
## VisEpi 1 0 1 0
## SubAxi 0 0 -1 -1
## VisMes 0 1 0 1
# Now the contrast matrix is combined with the per-probeset linear model fit.
#huvec_fits <- contrasts.fit(fit, contrast.matrix)
#huvec_ebFit <- eBayes(huvec_fits)
Vis_fits <- contrasts.fit(fit,contrast.matrix)
Vis_ebfits <- eBayes(Vis_fits)
# return the top 10 results for any given contrast
# coef=1 is huvec_choroid, coef=2 is huvec_retina
toptable(Vis_ebfits, number=50, coef=3,adjust="fdr",sort.by="B")
## toptable() is deprecated and will be removed in the future version of limma. Please use topTable() instead.
## logFC t P.Value adj.P.Val B
## 1448377_at -7.675489 -31.84527 4.084632e-12 4.620944e-08 16.949541
## 1418945_at 6.717054 27.86929 1.722140e-11 9.741288e-08 15.965920
## 1454881_s_at -8.240210 -26.42883 3.049165e-11 1.042400e-07 15.549251
## 1423253_at 5.869459 25.96702 3.685671e-11 1.042400e-07 15.407836
## 1419532_at 6.377121 25.23044 5.021411e-11 1.051779e-07 15.173870
## 1419063_at 5.184754 24.98461 5.578250e-11 1.051779e-07 15.093396
## 1456741_s_at -6.120338 -23.91864 8.906587e-11 1.439432e-07 14.729837
## 1456228_x_at 5.586926 21.72258 2.497098e-10 3.521094e-07 13.898524
## 1434237_at -7.324556 -21.38325 2.954392e-10 3.521094e-07 13.759158
## 1437718_x_at -4.644284 -21.13023 3.354666e-10 3.521094e-07 13.653186
## 1426442_at -5.437002 -21.08995 3.423675e-10 3.521094e-07 13.636149
## 1449319_at -5.047787 -20.36108 4.981510e-10 4.696318e-07 13.319814
## 1423327_at 3.961866 20.04618 5.881008e-10 5.117834e-07 13.178262
## 1433532_a_at 5.336824 19.19148 9.347300e-10 7.129154e-07 12.778338
## 1418755_at 4.108085 19.17125 9.452604e-10 7.129154e-07 12.768584
## 1452418_at -3.264809 -17.47215 2.526572e-09 1.786444e-06 11.897683
## 1436201_x_at 6.056053 16.70292 4.062621e-09 2.703555e-06 11.467037
## 1455626_at 5.922248 16.59642 4.345711e-09 2.731279e-06 11.405472
## 1419646_a_at 6.264580 15.88519 6.886753e-09 4.100518e-06 10.981555
## 1454651_x_at 5.830354 14.50748 1.778250e-08 9.977912e-06 10.092091
## 1418457_at 2.634644 14.45085 1.852171e-08 9.977912e-06 10.053451
## 1460238_at -4.596892 -14.36509 1.970562e-08 1.013317e-05 9.994600
## 1424890_at -4.931935 -14.17119 2.269695e-08 1.116394e-05 9.860064
## 1437685_x_at -3.493464 -13.97058 2.631946e-08 1.240634e-05 9.718659
## 1425995_s_at -4.602885 -13.78997 3.012246e-08 1.363102e-05 9.589393
## 1431475_a_at 3.599702 13.67880 3.275786e-08 1.425345e-05 9.508879
## 1448529_at -2.211570 -13.41947 3.993241e-08 1.673168e-05 9.318222
## 1417275_at 5.482638 13.36228 4.173428e-08 1.686214e-05 9.275632
## 1418672_at -1.658643 -13.21800 4.668506e-08 1.821200e-05 9.167291
## 1449033_at -4.722900 -13.09261 5.150779e-08 1.942359e-05 9.072088
## 1449456_a_at 2.826001 13.03893 5.373592e-08 1.961015e-05 9.031023
## 1439506_at -2.222314 -12.81294 6.433253e-08 2.274356e-05 8.856139
## 1434342_at 2.415821 12.72307 6.916044e-08 2.370946e-05 8.785665
## 1415939_at -3.961586 -12.34361 9.434988e-08 2.996775e-05 8.482180
## 1424338_at -2.299122 -12.33864 9.473939e-08 2.996775e-05 8.478144
## 1418879_at -2.703162 -12.33074 9.536276e-08 2.996775e-05 8.471718
## 1433855_at -2.510326 -12.27990 9.948196e-08 3.041728e-05 8.430264
## 1451335_at 3.499658 12.06159 1.194993e-07 3.557621e-05 8.250215
## 1423396_at -4.435573 -11.95137 1.312336e-07 3.806784e-05 8.158021
## 1422308_a_at -4.405263 -11.89639 1.375487e-07 3.890220e-05 8.111710
## 1420512_at 2.577223 11.75554 1.552856e-07 4.284746e-05 7.992041
## 1417447_at -4.144418 -11.67801 1.660949e-07 4.473884e-05 7.925551
## 1425505_at -1.477072 -11.46616 2.000241e-07 5.262494e-05 7.741545
## 1421811_at -2.526689 -11.43255 2.060654e-07 5.298222e-05 7.712042
## 1436990_s_at 2.255748 11.30079 2.317336e-07 5.825784e-05 7.595524
## 1423136_at -4.327569 -11.26774 2.387028e-07 5.870532e-05 7.566084
## 1428891_at 2.224485 11.22952 2.470479e-07 5.946496e-05 7.531927
## 1420559_a_at 2.049718 11.18396 2.574084e-07 6.066795e-05 7.491070
## 1448395_at -2.997288 -11.04337 2.924696e-07 6.699433e-05 7.363926
## 1437324_x_at -3.509240 -11.02989 2.960944e-07 6.699433e-05 7.351650
write.table(toptable(Vis_ebfits,coef=3,adjust="fdr",sort.by="B",number=10000),file="limma_complete.xls",row.name=T,sep="\t")
## toptable() is deprecated and will be removed in the future version of limma. Please use topTable() instead.
results = decideTests(Vis_ebfits,p.value = 0.05);vennDiagram(results);plotMA(Vis_ebfits,2);volcanoplot(Vis_ebfits)
volcanoplot(Vis_ebfits,coef=3,highlight=5,xlab="Log Fold Change",ylab="Log Odds", pch=19, cex=0.67, col = "dark blue")
x=topTable(Vis_ebfits,number=50000, coef=3,adjust="fdr",sort.by="P"); y <- x[x$adj.P.Val < 0.01,]; y; print("Number of genes in this list:"); length(y$ID)
## logFC AveExpr t P.Value adj.P.Val
## 1448377_at -7.6754885 7.099929 -31.845273 4.084632e-12 4.620944e-08
## 1418945_at 6.7170540 7.189678 27.869291 1.722140e-11 9.741288e-08
## 1454881_s_at -8.2402099 6.096258 -26.428832 3.049165e-11 1.042400e-07
## 1423253_at 5.8694586 6.363157 25.967016 3.685671e-11 1.042400e-07
## 1419532_at 6.3771211 5.908718 25.230440 5.021411e-11 1.051779e-07
## 1419063_at 5.1847538 4.682831 24.984611 5.578250e-11 1.051779e-07
## 1456741_s_at -6.1203382 6.266611 -23.918637 8.906587e-11 1.439432e-07
## 1456228_x_at 5.5869256 8.259734 21.722575 2.497098e-10 3.521094e-07
## 1434237_at -7.3245561 5.739062 -21.383249 2.954392e-10 3.521094e-07
## 1437718_x_at -4.6442841 4.742540 -21.130235 3.354666e-10 3.521094e-07
## 1426442_at -5.4370018 6.126939 -21.089954 3.423675e-10 3.521094e-07
## 1449319_at -5.0477871 4.532439 -20.361078 4.981510e-10 4.696318e-07
## 1423327_at 3.9618657 5.254291 20.046179 5.881008e-10 5.117834e-07
## 1433532_a_at 5.3368243 9.493537 19.191478 9.347300e-10 7.129154e-07
## 1418755_at 4.1080850 4.944802 19.171248 9.452604e-10 7.129154e-07
## 1452418_at -3.2648089 9.887167 -17.472149 2.526572e-09 1.786444e-06
## 1436201_x_at 6.0560532 7.270699 16.702919 4.062621e-09 2.703555e-06
## 1455626_at 5.9222476 7.001149 16.596417 4.345711e-09 2.731279e-06
## 1419646_a_at 6.2645800 6.718736 15.885187 6.886753e-09 4.100518e-06
## 1454651_x_at 5.8303541 7.180588 14.507480 1.778250e-08 9.977912e-06
## 1418457_at 2.6346440 3.871217 14.450852 1.852171e-08 9.977912e-06
## 1460238_at -4.5968925 4.716701 -14.365088 1.970562e-08 1.013317e-05
## 1424890_at -4.9319352 4.309848 -14.171193 2.269695e-08 1.116394e-05
## 1437685_x_at -3.4934644 5.308318 -13.970580 2.631946e-08 1.240634e-05
## 1425995_s_at -4.6028846 4.620890 -13.789972 3.012246e-08 1.363102e-05
## 1431475_a_at 3.5997016 3.405159 13.678796 3.275786e-08 1.425345e-05
## 1448529_at -2.2115696 9.947873 -13.419465 3.993241e-08 1.673168e-05
## 1417275_at 5.4826382 6.104669 13.362277 4.173428e-08 1.686214e-05
## 1418672_at -1.6586432 7.248053 -13.217997 4.668506e-08 1.821200e-05
## 1449033_at -4.7228996 4.583156 -13.092614 5.150779e-08 1.942359e-05
## 1449456_a_at 2.8260015 5.143290 13.038930 5.373592e-08 1.961015e-05
## 1439506_at -2.2223143 4.390522 -12.812944 6.433253e-08 2.274356e-05
## 1434342_at 2.4158207 5.337319 12.723068 6.916044e-08 2.370946e-05
## 1415939_at -3.9615861 5.192550 -12.343608 9.434988e-08 2.996775e-05
## 1424338_at -2.2991222 6.413550 -12.338642 9.473939e-08 2.996775e-05
## 1418879_at -2.7031624 5.620922 -12.330740 9.536276e-08 2.996775e-05
## 1433855_at -2.5103255 5.431757 -12.279898 9.948196e-08 3.041728e-05
## 1451335_at 3.4996578 8.715085 12.061592 1.194993e-07 3.557621e-05
## 1423396_at -4.4355730 8.058948 -11.951369 1.312336e-07 3.806784e-05
## 1422308_a_at -4.4052634 4.409563 -11.896395 1.375487e-07 3.890220e-05
## 1420512_at 2.5772232 4.577216 11.755537 1.552856e-07 4.284746e-05
## 1417447_at -4.1444177 3.870834 -11.678011 1.660949e-07 4.473884e-05
## 1425505_at -1.4770724 9.797096 -11.466155 2.000241e-07 5.262494e-05
## 1421811_at -2.5266887 8.955620 -11.432550 2.060654e-07 5.298222e-05
## 1436990_s_at 2.2557483 12.424991 11.300791 2.317336e-07 5.825784e-05
## 1423136_at -4.3275686 7.263693 -11.267741 2.387028e-07 5.870532e-05
## 1428891_at 2.2244846 7.924754 11.229516 2.470479e-07 5.946496e-05
## 1420559_a_at 2.0497179 2.907983 11.183962 2.574084e-07 6.066795e-05
## 1448395_at -2.9972881 5.002243 -11.043370 2.924696e-07 6.699433e-05
## 1437324_x_at -3.5092398 4.502582 -11.029888 2.960944e-07 6.699433e-05
## 1427038_at -3.0913046 8.246281 -10.911358 3.301434e-07 7.262026e-05
## 1422870_at -1.6433909 7.922658 -10.896918 3.345733e-07 7.262026e-05
## 1448730_at 2.8688501 6.005145 10.878819 3.402169e-07 7.262026e-05
## 1422573_at -1.2705488 8.096635 -10.817941 3.599699e-07 7.408769e-05
## 1425506_at -1.4399072 9.681889 -10.817285 3.601894e-07 7.408769e-05
## 1418715_at 2.1622155 7.388945 10.751188 3.830684e-07 7.646593e-05
## 1426154_s_at 8.1175954 9.067815 10.733539 3.894404e-07 7.646593e-05
## 1423294_at -2.7660823 7.720232 -10.726459 3.920290e-07 7.646593e-05
## 1456084_x_at -3.6856069 8.769302 -10.621813 4.325427e-07 8.293823e-05
## 1418603_at -2.1718004 3.381947 -10.307581 5.840233e-07 1.075735e-04
## 1423292_a_at 2.8984889 4.344049 10.278536 6.006893e-07 1.075735e-04
## 1460412_at 1.4896982 3.364960 10.275585 6.024113e-07 1.075735e-04
## 1422789_at -2.6159577 5.485018 -10.263635 6.094385e-07 1.075735e-04
## 1448211_at -2.9354753 7.249059 -10.231042 6.290611e-07 1.075735e-04
## 1421433_at 3.0983372 5.690619 10.230226 6.295611e-07 1.075735e-04
## 1449433_at 2.3696527 4.321141 10.221570 6.348911e-07 1.075735e-04
## 1449867_at 2.8547318 3.496831 10.205389 6.449868e-07 1.075735e-04
## 1426513_at -1.6528072 7.067604 -10.202827 6.466011e-07 1.075735e-04
## 1460302_at -3.2334082 4.126534 -10.070216 7.364419e-07 1.195352e-04
## 1449252_at -2.2058172 3.610226 -10.065833 7.396329e-07 1.195352e-04
## 1420465_s_at 6.1607265 12.094813 9.999853 7.895272e-07 1.258017e-04
## 1431554_a_at -2.0988030 2.711995 -9.957025 8.238577e-07 1.294486e-04
## 1416529_at -1.7821978 11.485804 -9.884022 8.861585e-07 1.349094e-04
## 1423577_at -1.2025631 7.285257 -9.879273 8.903842e-07 1.349094e-04
## 1450723_at -3.7190695 5.249579 -9.874796 8.943873e-07 1.349094e-04
## 1456584_x_at -1.2840384 8.377148 -9.685436 1.082943e-06 1.612017e-04
## 1450992_a_at -1.5277196 6.019356 -9.668936 1.101303e-06 1.618057e-04
## 1425464_at -1.8717983 6.950738 -9.565877 1.223885e-06 1.775105e-04
## 1434776_at -2.1283963 4.159094 -9.530643 1.269118e-06 1.805568e-04
## 1457776_at -1.8406888 4.162749 -9.524786 1.276809e-06 1.805568e-04
## 1460187_at -3.3729390 4.205143 -9.507816 1.299385e-06 1.806124e-04
## 1426869_at -2.5367526 5.811162 -9.500586 1.309133e-06 1.806124e-04
## 1449314_at -2.2829530 5.784812 -9.464883 1.358449e-06 1.851582e-04
## 1423608_at 1.5932109 11.689947 9.453081 1.375190e-06 1.852086e-04
## 1427299_at -1.6509568 7.633987 -9.437758 1.397257e-06 1.859667e-04
## 1416832_at -2.0911711 6.899971 -9.389288 1.469625e-06 1.929744e-04
## 1433720_s_at 2.3420411 10.829359 9.358224 1.518131e-06 1.929744e-04
## 1426657_s_at -1.4662194 9.500554 -9.353056 1.526366e-06 1.929744e-04
## 1455149_at -1.1854758 5.294292 -9.351159 1.529402e-06 1.929744e-04
## 1426592_a_at -1.4940247 7.478864 -9.347548 1.535198e-06 1.929744e-04
## 1426530_a_at -1.0148584 10.090677 -9.313891 1.590376e-06 1.977135e-04
## 1416105_at -1.1753675 7.425582 -9.237923 1.722969e-06 2.118690e-04
## 1449218_at 3.6784149 11.281117 9.202085 1.789626e-06 2.176993e-04
## 1418057_at -1.3193540 6.526424 -9.187501 1.817544e-06 2.187434e-04
## 1452127_a_at -1.2609432 6.666351 -9.124030 1.944655e-06 2.315777e-04
## 1448926_at -2.3597718 6.547531 -9.026182 2.159819e-06 2.537786e-04
## 1455796_x_at -1.4792464 6.705227 -9.019275 2.175950e-06 2.537786e-04
## 1450455_s_at -1.5670062 7.248035 -9.006257 2.206708e-06 2.547397e-04
## 1425137_a_at 2.5087135 9.032383 8.960341 2.319008e-06 2.649993e-04
## 1425475_at -1.7426384 6.121096 -8.936417 2.379956e-06 2.692444e-04
## 1418328_at 3.5776478 4.718612 8.907456 2.456057e-06 2.751027e-04
## 1428781_at -3.4064923 4.294581 -8.881975 2.525192e-06 2.786271e-04
## 1425341_at 1.6692597 5.719628 8.877778 2.536780e-06 2.786271e-04
## 1456691_s_at -1.0772078 6.809195 -8.856690 2.595880e-06 2.823768e-04
## 1449249_at -1.9881834 5.599175 -8.779976 2.823738e-06 3.042376e-04
## 1422329_a_at 2.2440968 3.671121 8.740964 2.947822e-06 3.146104e-04
## 1438966_x_at -3.1627626 6.992793 -8.712715 3.041345e-06 3.215583e-04
## 1419684_at 2.5878345 8.859994 8.676948 3.164380e-06 3.314688e-04
## 1427320_at -1.4639829 7.801927 -8.620009 3.371467e-06 3.499212e-04
## 1418907_at -1.4718938 2.703942 -8.600327 3.446416e-06 3.544482e-04
## 1448816_at -2.3857605 7.682803 -8.581715 3.518951e-06 3.586477e-04
## 1416527_at -1.1100457 8.821119 -8.562360 3.596130e-06 3.632412e-04
## 1451031_at 1.7200426 6.948589 8.538589 3.693425e-06 3.684151e-04
## 1435941_at -1.3525906 4.278140 -8.534012 3.712483e-06 3.684151e-04
## 1427183_at -1.3789518 12.151980 -8.498481 3.864092e-06 3.759047e-04
## 1456471_x_at -1.2606431 10.255051 -8.488264 3.908916e-06 3.759047e-04
## 1435833_at -2.2322979 5.472933 -8.487349 3.912957e-06 3.759047e-04
## 1424099_at 1.8525703 11.290234 8.485561 3.920866e-06 3.759047e-04
## 1425967_a_at 1.6744344 3.906529 8.468488 3.997274e-06 3.784557e-04
## 1417079_s_at -2.0353622 2.713933 -8.464714 4.014381e-06 3.784557e-04
## 1423436_at -2.1477411 9.653877 -8.413816 4.252968e-06 3.957216e-04
## 1416236_a_at 1.9311598 6.693696 8.410819 4.267483e-06 3.957216e-04
## 1426261_s_at -1.5014277 9.337173 -8.380371 4.418041e-06 4.029258e-04
## 1419693_at -1.6310193 7.761254 -8.373882 4.450864e-06 4.029258e-04
## 1418190_at 2.1492815 8.714366 8.373654 4.452022e-06 4.029258e-04
## 1422904_at -2.5031485 6.618896 -8.309160 4.793015e-06 4.303443e-04
## 1422596_at -4.4089325 3.961529 -8.286879 4.917284e-06 4.380255e-04
## 1417781_at -1.5438458 5.962859 -8.268021 5.025179e-06 4.441395e-04
## 1453678_at -1.4130343 4.562712 -8.194850 5.468632e-06 4.795863e-04
## 1423405_at -1.6849070 10.860741 -8.146822 5.782540e-06 5.032144e-04
## 1431530_a_at -1.5551259 5.743055 -8.129468 5.900701e-06 5.095774e-04
## 1423278_at -1.6702236 4.729804 -8.080659 6.247205e-06 5.354139e-04
## 1450869_at -3.3711212 5.959836 -8.011195 6.778699e-06 5.765972e-04
## 1454674_at 1.3300593 2.740763 7.991242 6.940232e-06 5.816612e-04
## 1425468_at 2.6680637 6.072564 7.991141 6.941064e-06 5.816612e-04
## 1448664_a_at -1.5463508 3.930116 -7.970492 7.112629e-06 5.889745e-04
## 1449315_at -1.8127995 5.426116 -7.968140 7.132459e-06 5.889745e-04
## 1427300_at 2.5945413 5.201124 7.956015 7.235640e-06 5.931651e-04
## 1426208_x_at -2.0808906 10.866311 -7.930036 7.462156e-06 6.073336e-04
## 1423978_at 1.2963636 6.163787 7.899158 7.741385e-06 6.255592e-04
## 1416468_at -1.7367898 11.421302 -7.871837 7.997836e-06 6.416987e-04
## 1451718_at 2.2247349 7.742224 7.852467 8.185202e-06 6.521069e-04
## 1439036_a_at -2.3929826 9.368874 -7.845369 8.255039e-06 6.528289e-04
## 1421035_a_at -0.9585137 4.411129 -7.839861 8.309676e-06 6.528289e-04
## 1420664_s_at 1.1548675 9.400716 7.824508 8.464029e-06 6.603694e-04
## 1437621_x_at -1.1448075 11.996382 -7.810291 8.609718e-06 6.671352e-04
## 1418545_at -1.8167791 5.324306 -7.790310 8.819057e-06 6.787074e-04
## 1452432_at -1.5053393 6.715680 -7.782447 8.902935e-06 6.805332e-04
## 1448415_a_at 1.4681820 5.487271 7.766870 9.071647e-06 6.887755e-04
## 1452048_at 0.7549328 10.172678 7.727149 9.517657e-06 7.176132e-04
## 1452318_a_at -1.4826331 8.703800 -7.721901 9.578325e-06 7.176132e-04
## 1421882_a_at 2.7377327 3.931380 7.639147 1.059215e-05 7.883485e-04
## 1420621_a_at -1.0541595 11.719197 -7.620741 1.083299e-05 7.965863e-04
## 1427122_at -1.7953219 2.695367 -7.619936 1.084366e-05 7.965863e-04
## 1417040_a_at -1.4639666 6.065146 -7.610767 1.096596e-05 8.003734e-04
## 1450377_at -1.5756605 2.686671 -7.596745 1.115587e-05 8.090148e-04
## 1423516_a_at -1.8740081 8.639407 -7.587330 1.128537e-05 8.131933e-04
## 1416316_at 3.2951115 5.379022 7.576862 1.143125e-05 8.180922e-04
## 1450286_at -2.0478526 7.305392 -7.568193 1.155360e-05 8.180922e-04
## 1423281_at -1.2564761 4.777584 -7.565881 1.158646e-05 8.180922e-04
## 1449824_at -3.3838954 5.115611 -7.561948 1.164261e-05 8.180922e-04
## 1448550_at -1.8286411 8.235776 -7.552413 1.177993e-05 8.226318e-04
## 1450652_at 1.5554304 8.652790 7.502129 1.253360e-05 8.698933e-04
## 1455206_at -0.9017819 10.924477 -7.488395 1.274835e-05 8.791730e-04
## 1419309_at -1.5319930 8.506383 -7.483696 1.282273e-05 8.791730e-04
## 1437863_at -1.5475774 7.155868 -7.470824 1.302889e-05 8.879264e-04
## 1454714_x_at -1.2533334 12.292363 -7.455873 1.327282e-05 8.991339e-04
## 1456573_x_at -1.0492595 8.372305 -7.445381 1.344693e-05 9.055069e-04
## 1451047_at 1.7399404 9.796267 7.435103 1.361989e-05 9.064348e-04
## 1421841_at -1.2468699 3.656449 -7.435040 1.362096e-05 9.064348e-04
## 1420842_at -1.4546604 8.371622 -7.417035 1.392976e-05 9.215633e-04
## 1452179_at -0.8165858 8.991757 -7.404773 1.414436e-05 9.258969e-04
## 1436845_at -1.7945856 5.339632 -7.403947 1.415895e-05 9.258969e-04
## 1455061_a_at 1.2345322 9.761179 7.380834 1.457364e-05 9.419072e-04
## 1436448_a_at -1.2072859 7.023062 -7.377091 1.464203e-05 9.419072e-04
## 1450185_a_at -1.3277936 2.795851 -7.376462 1.465356e-05 9.419072e-04
## 1428372_at -1.0869343 7.128990 -7.327812 1.557518e-05 9.954916e-04
## 1423135_at 1.1679371 8.239127 7.319483 1.573911e-05 9.994564e-04
## 1417877_at -1.6818198 8.292776 -7.315714 1.581390e-05 9.994564e-04
## 1423437_at -2.1516482 6.404660 -7.265277 1.685243e-05 1.056881e-03
## 1418157_at -2.0625374 7.017250 -7.262610 1.690934e-05 1.056881e-03
## 1425163_at -3.0234619 3.384183 -7.256156 1.704795e-05 1.059689e-03
## 1424783_a_at -1.4287252 9.662038 -7.241900 1.735843e-05 1.073092e-03
## 1419648_at -0.8928712 8.500788 -7.197854 1.835674e-05 1.125607e-03
## 1419762_at 2.9540076 6.457758 7.195536 1.841096e-05 1.125607e-03
## 1427052_at 1.8603700 8.783335 7.191473 1.850640e-05 1.125607e-03
## 1431028_a_at 1.7225258 7.102283 7.180724 1.876150e-05 1.135021e-03
## 1426677_at -0.7554694 9.187357 -7.175533 1.888603e-05 1.136477e-03
## 1420629_a_at 0.9812186 6.786670 7.168498 1.905625e-05 1.138435e-03
## 1424214_at 2.4989506 6.184761 7.165887 1.911982e-05 1.138435e-03
## 1426522_at 1.3007487 12.454139 7.151146 1.948315e-05 1.150156e-03
## 1416204_at 1.4979828 8.597448 7.149667 1.952002e-05 1.150156e-03
## 1417552_at 1.2484004 8.691417 7.129451 2.003140e-05 1.174172e-03
## 1421999_at -1.9561723 7.787894 -7.097289 2.087489e-05 1.217308e-03
## 1423363_at -1.2653185 6.413666 -7.067833 2.168093e-05 1.252435e-03
## 1424407_s_at -0.7130667 8.869003 -7.063463 2.180333e-05 1.252435e-03
## 1422444_at -1.2620889 9.463306 -7.060665 2.188209e-05 1.252435e-03
## 1423307_s_at 1.1191767 8.457242 7.059319 2.192011e-05 1.252435e-03
## 1418804_at -1.3083286 9.982083 -7.054164 2.206628e-05 1.254451e-03
## 1452320_at -2.1733460 2.739067 -7.039382 2.249130e-05 1.267002e-03
## 1453839_a_at 2.2096147 8.581060 7.038703 2.251103e-05 1.267002e-03
## 1449079_s_at 1.1926311 9.401792 7.033310 2.266840e-05 1.269543e-03
## 1435162_at 2.6824358 4.301396 7.014695 2.322081e-05 1.294074e-03
## 1423574_s_at -0.9333407 6.747700 -6.998331 2.371837e-05 1.315323e-03
## 1427516_a_at -1.8819554 4.632796 -6.977368 2.437255e-05 1.343482e-03
## 1416910_at 0.9530495 11.832911 6.974496 2.446366e-05 1.343482e-03
## 1429054_at 0.8027204 9.379225 6.950624 2.523536e-05 1.373189e-03
## 1417403_at 2.7978762 9.737667 6.950259 2.524736e-05 1.373189e-03
## 1450686_at -0.7513701 9.524475 -6.939118 2.561662e-05 1.386607e-03
## 1430385_a_at -1.3186559 4.467916 -6.920569 2.624429e-05 1.402939e-03
## 1450024_at -0.8850471 7.306914 -6.919188 2.629170e-05 1.402939e-03
## 1460409_at -0.8903163 8.541593 -6.915623 2.641443e-05 1.402939e-03
## 1456226_x_at -0.8155419 10.229453 -6.915333 2.642445e-05 1.402939e-03
## 1426851_a_at -2.2240693 6.254935 -6.909000 2.664415e-05 1.402939e-03
## 1428401_at -0.6568739 3.740918 -6.908475 2.666242e-05 1.402939e-03
## 1418604_at -1.1362706 2.455795 -6.886151 2.745315e-05 1.435724e-03
## 1416564_at -1.9794075 6.471850 -6.880342 2.766300e-05 1.435724e-03
## 1427482_a_at 2.3434062 6.165579 6.880254 2.766621e-05 1.435724e-03
## 1419470_at -1.1400214 8.568118 -6.872713 2.794124e-05 1.442612e-03
## 1436031_at -1.3965923 6.567594 -6.869645 2.805397e-05 1.442612e-03
## 1423109_s_at 1.2376584 9.867509 6.859821 2.841823e-05 1.454730e-03
## 1438932_at -1.0182817 6.358483 -6.834423 2.938374e-05 1.497379e-03
## 1427442_a_at -0.8188439 12.786812 -6.822272 2.985802e-05 1.514725e-03
## 1417497_at -1.6468352 5.687893 -6.807008 3.046554e-05 1.538646e-03
## 1417411_at 2.0329671 4.571517 6.803529 3.060585e-05 1.538862e-03
## 1426852_x_at -2.3560474 6.225903 -6.775998 3.174088e-05 1.583084e-03
## 1450021_at -0.7240344 10.918141 -6.775419 3.176523e-05 1.583084e-03
## 1423908_at 0.7773649 9.498962 6.771780 3.191874e-05 1.583757e-03
## 1417404_at 2.4899875 10.604144 6.757525 3.252775e-05 1.606928e-03
## 1426410_at -1.7998280 4.633114 -6.743730 3.312901e-05 1.629515e-03
## 1425336_x_at 0.6473972 12.879046 6.738460 3.336183e-05 1.633863e-03
## 1451339_at 0.8462565 6.604090 6.730021 3.373836e-05 1.638831e-03
## 1426873_s_at -1.5192788 5.932139 -6.729695 3.375299e-05 1.638831e-03
## 1422671_s_at -1.4861364 7.471692 -6.722070 3.409722e-05 1.648469e-03
## 1419469_at -1.3552577 6.314396 -6.704176 3.491999e-05 1.675577e-03
## 1424133_at -1.1124869 6.656032 -6.701044 3.506617e-05 1.675577e-03
## 1427127_x_at -1.6037593 8.271411 -6.700273 3.510226e-05 1.675577e-03
## 1450826_a_at -2.6671582 5.770528 -6.694599 3.536905e-05 1.681219e-03
## 1424921_at 1.1186403 9.244539 6.690471 3.556455e-05 1.683439e-03
## 1423108_at 0.9031401 11.420495 6.668838 3.660799e-05 1.725609e-03
## 1419314_at 1.9045999 2.876160 6.656175 3.723400e-05 1.738803e-03
## 1435820_x_at -0.7777059 7.357570 -6.655141 3.728561e-05 1.738803e-03
## 1422962_a_at 1.5907087 10.375017 6.653874 3.734900e-05 1.738803e-03
## 1424838_at 2.0570851 3.086289 6.641869 3.795506e-05 1.759777e-03
## 1417782_at -1.1986048 6.175758 -6.637731 3.816642e-05 1.762354e-03
## 1449499_at -0.9421783 3.397651 -6.626620 3.874014e-05 1.781574e-03
## 1423153_x_at -0.9725004 10.695388 -6.619733 3.910043e-05 1.790863e-03
## 1424316_at 0.8095368 7.584235 6.604000 3.993696e-05 1.821802e-03
## 1416554_at -0.9049222 7.914404 -6.596736 4.032964e-05 1.832326e-03
## 1417196_s_at -0.8463172 8.445528 -6.568906 4.187282e-05 1.894829e-03
## 1441618_at -0.8952825 6.431420 -6.559409 4.241382e-05 1.911664e-03
## 1448754_at -1.3696611 8.152019 -6.537932 4.366503e-05 1.960248e-03
## 1436934_s_at 1.1666324 12.165128 6.531740 4.403310e-05 1.968958e-03
## 1424037_at 1.2270803 3.333203 6.518281 4.484460e-05 1.997350e-03
## 1418500_at -1.0292237 3.879086 -6.513253 4.515185e-05 2.003148e-03
## 1429369_at -0.8810498 7.529411 -6.489064 4.666184e-05 2.062052e-03
## 1426260_a_at -1.4877627 10.843457 -6.486199 4.684422e-05 2.062057e-03
## 1423753_at -1.2316686 6.041506 -6.479436 4.727780e-05 2.073077e-03
## 1426604_at -0.7569969 8.894546 -6.472032 4.775746e-05 2.086024e-03
## 1422445_at -1.1135954 10.301899 -6.455805 4.882694e-05 2.119126e-03
## 1448299_at -1.6959649 2.870652 -6.450362 4.919136e-05 2.119126e-03
## 1424485_at -1.7073158 3.248191 -6.449280 4.926415e-05 2.119126e-03
## 1428145_at 1.0795426 11.032584 6.449274 4.926458e-05 2.119126e-03
## 1423890_x_at -1.9260028 8.482665 -6.438457 4.999872e-05 2.130907e-03
## 1450876_at -1.0311335 10.656904 -6.436928 5.010344e-05 2.130907e-03
## 1426998_at -0.9432287 9.865778 -6.436926 5.010353e-05 2.130907e-03
## 1420907_at -0.6328482 9.269588 -6.425440 5.089771e-05 2.156576e-03
## 1418666_at -1.4105225 4.073936 -6.419320 5.132633e-05 2.166622e-03
## 1451447_at -1.1628389 4.907793 -6.416188 5.154718e-05 2.167856e-03
## 1448494_at -1.6400022 8.687731 -6.409267 5.203884e-05 2.180428e-03
## 1415854_at -1.3566099 5.345814 -6.404276 5.239653e-05 2.187314e-03
## 1417373_a_at 1.5573362 10.429203 6.399621 5.273246e-05 2.193244e-03
## 1416369_at -0.7841085 9.368508 -6.389036 5.350504e-05 2.213793e-03
## 1428068_at 0.8074468 9.687318 6.385041 5.379974e-05 2.213793e-03
## 1418497_at 2.1058888 6.563658 6.384854 5.381358e-05 2.213793e-03
## 1438385_s_at -1.0210776 11.412700 -6.371388 5.482011e-05 2.247029e-03
## 1433543_at -1.5827971 7.828097 -6.363449 5.542295e-05 2.263537e-03
## 1423769_at 0.7548213 7.152997 6.358589 5.579545e-05 2.270554e-03
## 1451961_a_at 1.1656453 2.769935 6.333062 5.779670e-05 2.337953e-03
## 1435458_at 1.7198968 6.475714 6.329659 5.806924e-05 2.337953e-03
## 1449078_at 1.0482935 9.278799 6.328212 5.818551e-05 2.337953e-03
## 1437218_at -1.6850188 6.463218 -6.325146 5.843276e-05 2.337953e-03
## 1424505_at 0.9614489 6.576082 6.324500 5.848500e-05 2.337953e-03
## 1455007_s_at -1.1916319 11.320793 -6.312337 5.947794e-05 2.364528e-03
## 1427126_at -1.6549302 6.949234 -6.311247 5.956779e-05 2.364528e-03
## 1419136_at 3.3281555 4.909973 6.307112 5.991003e-05 2.369798e-03
## 1438933_x_at -1.0376770 6.457018 -6.304354 6.013947e-05 2.370585e-03
## 1452206_at 0.9175562 13.117310 6.296084 6.083303e-05 2.389598e-03
## 1424223_at 1.5736734 6.812522 6.284254 6.184010e-05 2.420751e-03
## 1430172_a_at -0.8666658 3.609286 -6.274342 6.269758e-05 2.445854e-03
## 1434579_x_at 0.8024238 11.476602 6.269949 6.308170e-05 2.448710e-03
## 1417416_at 2.2575348 5.202324 6.268559 6.320369e-05 2.448710e-03
## 1415933_a_at 0.6437918 13.551080 6.265652 6.345977e-05 2.450240e-03
## 1449875_s_at 0.7302466 11.422196 6.255256 6.438471e-05 2.461738e-03
## 1452091_a_at -1.0106738 8.581731 -6.254140 6.448493e-05 2.461738e-03
## 1435184_at -1.9214837 10.662635 -6.253652 6.452870e-05 2.461738e-03
## 1416136_at 1.8226764 8.695605 6.252549 6.462798e-05 2.461738e-03
## 1448735_at -0.9144223 8.722394 -6.247405 6.509283e-05 2.471125e-03
## 1438640_x_at 0.7808968 11.487608 6.242653 6.552538e-05 2.479226e-03
## 1451002_at 1.2311251 11.739593 6.239768 6.578959e-05 2.480925e-03
## 1427997_at 0.7190335 9.410655 6.217634 6.785436e-05 2.550287e-03
## 1448201_at 1.3736351 8.477515 6.212944 6.830069e-05 2.558562e-03
## 1439364_a_at 1.6400821 9.502139 6.200542 6.949612e-05 2.594751e-03
## 1420843_at -1.7515716 7.350760 -6.197223 6.981987e-05 2.598264e-03
## 1449271_a_at 2.3636387 4.118898 6.189883 7.054149e-05 2.616511e-03
## 1416371_at 2.0678090 8.899249 6.182357 7.128966e-05 2.628188e-03
## 1450974_at -1.6689943 9.348558 -6.182045 7.132093e-05 2.628188e-03
## 1423450_a_at -1.3563008 3.760080 -6.179661 7.155975e-05 2.628427e-03
## 1434372_at 1.3246869 10.906301 6.174337 7.209637e-05 2.639567e-03
## 1428107_at -0.7118325 12.329664 -6.167924 7.274845e-05 2.654234e-03
## 1452382_at 1.3288037 5.328921 6.165438 7.300288e-05 2.654234e-03
## 1419905_s_at -0.8475560 9.871583 -6.163510 7.320084e-05 2.654234e-03
## 1421855_at 1.0599091 9.345264 6.158949 7.367149e-05 2.662766e-03
## 1454898_s_at -0.5930377 10.983326 -6.147709 7.484538e-05 2.696579e-03
## 1419100_at -0.8938241 8.616078 -6.142812 7.536299e-05 2.706608e-03
## 1449168_a_at -0.9577906 8.410621 -6.137456 7.593348e-05 2.718467e-03
## 1452751_at 1.1575703 7.853633 6.127109 7.704874e-05 2.749692e-03
## 1434272_at -0.8616408 9.126790 -6.113385 7.855521e-05 2.794638e-03
## 1425652_s_at -0.9706063 7.438023 -6.107273 7.923615e-05 2.810027e-03
## 1418453_a_at -1.8270109 6.235056 -6.079183 8.244781e-05 2.914788e-03
## 1448416_at -1.3871823 10.819177 -6.076171 8.280034e-05 2.918132e-03
## 1417956_at 5.2894319 9.606798 6.073528 8.311110e-05 2.919987e-03
## 1450696_at 1.6216513 9.207927 6.057495 8.502261e-05 2.977587e-03
## 1416712_at 1.1303356 10.312253 6.055391 8.527694e-05 2.977587e-03
## 1429359_s_at -0.8645797 8.985275 -6.050583 8.586113e-05 2.987553e-03
## 1449550_at -1.1382180 6.482411 -6.048705 8.609055e-05 2.987553e-03
## 1420542_at 1.2911967 4.684909 6.034636 8.782964e-05 3.038583e-03
## 1448319_at 0.7012686 10.527179 6.032295 8.812268e-05 3.039427e-03
## 1437341_x_at 1.2214238 9.886715 6.018657 8.985046e-05 3.089600e-03
## 1437133_x_at 0.5587088 12.294702 6.004158 9.172713e-05 3.144573e-03
## 1422606_at -1.4749985 3.253937 -5.999803 9.229896e-05 3.154617e-03
## 1455447_at -2.2048140 7.033973 -5.984538 9.433356e-05 3.214444e-03
## 1425784_a_at -1.2731284 7.883133 -5.963485 9.721844e-05 3.302799e-03
## 1425476_at -1.6945232 8.868467 -5.957274 9.808744e-05 3.322345e-03
## 1452411_at -1.0991118 2.726466 -5.941911 1.002726e-04 3.386220e-03
## 1433670_at -1.0366618 8.180706 -5.930717 1.018975e-04 3.430852e-03
## 1426127_x_at 1.2004090 3.241351 5.926062 1.025815e-04 3.443632e-03
## 1420447_at -3.7651827 7.290877 -5.919020 1.036256e-04 3.468391e-03
## 1427123_s_at -1.6647583 6.251982 -5.900777 1.063832e-04 3.550186e-03
## 1456642_x_at -0.6817163 12.326359 -5.881908 1.093181e-04 3.630252e-03
## 1428330_at -0.6533206 5.538962 -5.881236 1.094242e-04 3.630252e-03
## 1415877_at -0.9259267 6.408612 -5.875390 1.103519e-04 3.646223e-03
## 1451653_a_at -0.9485910 4.153960 -5.874147 1.105502e-04 3.646223e-03
## 1451504_at 0.8964572 10.751675 5.870133 1.111932e-04 3.656770e-03
## 1455961_at 0.9538208 10.772542 5.865128 1.120006e-04 3.672645e-03
## 1425810_a_at -1.1358929 5.756363 -5.862560 1.124174e-04 3.673118e-03
## 1423414_at -1.2043251 6.697241 -5.861043 1.126643e-04 3.673118e-03
## 1455283_x_at 0.7392482 11.446482 5.854506 1.137350e-04 3.697369e-03
## 1420906_at -0.8986029 6.982900 -5.847464 1.149006e-04 3.724558e-03
## 1421007_at -1.0388440 2.724351 -5.840749 1.160238e-04 3.740945e-03
## 1449466_at 1.1589331 9.605865 5.840489 1.160675e-04 3.740945e-03
## 1455978_a_at -1.3814829 10.003677 -5.833265 1.172896e-04 3.761121e-03
## 1450955_s_at -1.2719159 6.745959 -5.832861 1.173584e-04 3.761121e-03
## 1426593_a_at -0.9264189 10.903184 -5.824112 1.188578e-04 3.798412e-03
## 1451041_at -1.2046703 7.773609 -5.819350 1.196823e-04 3.813989e-03
## 1438115_a_at -1.2250631 7.885607 -5.816282 1.202167e-04 3.820116e-03
## 1431099_at -1.1091836 7.573771 -5.814377 1.205499e-04 3.820116e-03
## 1417198_at -0.9297326 2.877548 -5.812229 1.209269e-04 3.821358e-03
## 1434230_at 0.7072391 9.324484 5.804970 1.222098e-04 3.847064e-03
## 1434340_at 1.1155570 8.871886 5.803551 1.224622e-04 3.847064e-03
## 1425538_x_at -0.7653940 8.159019 -5.801878 1.227606e-04 3.847064e-03
## 1418709_at 3.4656719 8.593031 5.797844 1.234832e-04 3.859019e-03
## 1449551_at -1.1121844 5.210963 -5.786438 1.255511e-04 3.898777e-03
## 1417320_at 0.7278918 10.141570 5.786264 1.255829e-04 3.898777e-03
## 1416411_at -0.8775185 9.706218 -5.784046 1.259895e-04 3.898777e-03
## 1416639_at 2.0541689 2.697404 5.783260 1.261339e-04 3.898777e-03
## 1448153_at 0.6789245 13.338616 5.778709 1.269734e-04 3.914034e-03
## 1449350_at -1.5490492 7.193027 -5.768563 1.288664e-04 3.961591e-03
## 1448428_at -0.9628907 6.121216 -5.762935 1.299294e-04 3.983382e-03
## 1448672_a_at -0.7587107 7.497770 -5.761093 1.302794e-04 3.983382e-03
## 1428319_at -1.1179876 5.952299 -5.754267 1.315851e-04 4.012459e-03
## 1449416_at -1.7777278 5.523637 -5.749532 1.324990e-04 4.019297e-03
## 1422905_s_at -1.9971747 8.075728 -5.749424 1.325199e-04 4.019297e-03
## 1426978_at -0.8997955 11.612354 -5.732035 1.359350e-04 4.111851e-03
## 1427954_at -0.8609290 4.307570 -5.725920 1.371581e-04 4.137786e-03
## 1422502_at 0.8599102 7.745952 5.720439 1.382644e-04 4.145969e-03
## 1425143_a_at 0.7877764 11.702874 5.719741 1.384059e-04 4.145969e-03
## 1448024_at -2.1749834 8.668689 -5.719136 1.385288e-04 4.145969e-03
## 1426965_at -0.9993286 6.783716 -5.716797 1.390048e-04 4.149240e-03
## 1423407_a_at -1.4367687 8.300837 -5.713854 1.396061e-04 4.156221e-03
## 1426543_x_at -0.9721442 3.955580 -5.703485 1.417470e-04 4.208881e-03
## 1427508_at 1.3043020 5.706098 5.697921 1.429102e-04 4.232312e-03
## 1417437_at 0.6678120 6.952895 5.691216 1.443255e-04 4.263065e-03
## 1429183_at -2.2047246 7.831189 -5.675781 1.476404e-04 4.298698e-03
## 1450757_at -2.2424593 7.745613 -5.674936 1.478243e-04 4.298698e-03
## 1416612_at -1.4322968 8.499853 -5.674896 1.478331e-04 4.298698e-03
## 1434436_at -1.5630736 7.078579 -5.673821 1.480672e-04 4.298698e-03
## 1455494_at 1.7258855 10.706318 5.670105 1.488798e-04 4.298698e-03
## 1455042_at -0.8587974 9.493770 -5.668235 1.492906e-04 4.298698e-03
## 1425528_at 1.2567726 9.407718 5.667410 1.494721e-04 4.298698e-03
## 1422033_a_at 1.3571077 5.220126 5.666709 1.496265e-04 4.298698e-03
## 1426658_x_at -1.1780551 9.982299 -5.665918 1.498012e-04 4.298698e-03
## 1448510_at -0.9702197 3.865865 -5.664773 1.500541e-04 4.298698e-03
## 1426542_at -0.6830976 3.103820 -5.664702 1.500698e-04 4.298698e-03
## 1423661_s_at -0.7453021 4.811400 -5.664604 1.500915e-04 4.298698e-03
## 1423223_a_at -0.8750406 11.668380 -5.660944 1.509036e-04 4.311040e-03
## 1450663_at 1.3130523 6.233030 5.659080 1.513187e-04 4.312012e-03
## 1425189_a_at 0.6755963 9.085428 5.650490 1.532487e-04 4.356037e-03
## 1422912_at -1.9969061 5.329281 -5.642792 1.550003e-04 4.385496e-03
## 1417864_at 0.7475946 11.787500 5.642530 1.550604e-04 4.385496e-03
## 1427658_at -0.8675823 4.995997 -5.640320 1.555673e-04 4.385759e-03
## 1422465_a_at -0.6279042 5.233325 -5.638340 1.560232e-04 4.385759e-03
## 1453913_a_at 0.9410959 7.802194 5.637432 1.562327e-04 4.385759e-03
## 1418415_at -1.2987737 3.731739 -5.630970 1.577320e-04 4.402645e-03
## 1427540_at -0.6779567 5.029490 -5.630448 1.578539e-04 4.402645e-03
## 1448940_at 0.8738605 7.204142 5.629815 1.580018e-04 4.402645e-03
## 1427425_at 1.1275162 8.408105 5.619180 1.605075e-04 4.450567e-03
## 1427459_at 2.1095119 3.014243 5.619177 1.605084e-04 4.450567e-03
## 1432273_a_at 1.1475164 6.892644 5.614994 1.615054e-04 4.459587e-03
## 1424184_at 1.2322821 11.537980 5.614507 1.616221e-04 4.459587e-03
## 1448448_a_at 0.7422594 8.411786 5.611525 1.623374e-04 4.468426e-03
## 1427255_s_at 0.8332451 6.001400 5.595720 1.661861e-04 4.563259e-03
## 1448649_at -1.1967722 12.440884 -5.592494 1.669835e-04 4.574053e-03
## 1421960_at 0.8208084 7.205513 5.588769 1.679092e-04 4.588302e-03
## 1423891_at -1.0707178 4.092910 -5.574817 1.714258e-04 4.673108e-03
## 1425811_a_at -0.7085421 8.377458 -5.570390 1.725579e-04 4.692662e-03
## 1423242_at 0.6894372 9.490940 5.566013 1.736851e-04 4.711990e-03
## 1437671_x_at -1.0402545 11.674498 -5.560515 1.751121e-04 4.739337e-03
## 1417212_at 1.1899161 9.135893 5.556246 1.762286e-04 4.758172e-03
## 1455315_at -0.8960847 4.618397 -5.551234 1.775490e-04 4.763670e-03
## 1418980_a_at 1.7653788 4.879989 5.550638 1.777068e-04 4.763670e-03
## 1448433_a_at 1.0777003 9.933588 5.548713 1.782172e-04 4.763670e-03
## 1427957_at 2.5425687 7.335217 5.548083 1.783846e-04 4.763670e-03
## 1448859_at 4.0293520 7.368414 5.547508 1.785376e-04 4.763670e-03
## 1417520_at -0.7327756 2.549051 -5.544599 1.793134e-04 4.773112e-03
## 1425608_at -1.6044810 5.761361 -5.542577 1.798550e-04 4.776289e-03
## 1456292_a_at -0.6490739 13.235791 -5.534470 1.820431e-04 4.823077e-03
## 1435767_at -2.6798330 3.412757 -5.529169 1.834892e-04 4.850031e-03
## 1419485_at -1.8913017 4.466251 -5.520441 1.858968e-04 4.902216e-03
## 1433883_at -0.6178797 11.779580 -5.518530 1.864287e-04 4.904808e-03
## 1420449_at -0.9751648 3.801063 -5.515850 1.871769e-04 4.913068e-03
## 1425177_at 1.0492854 6.960262 5.503055 1.907937e-04 4.974237e-03
## 1452178_at 1.1055761 5.794656 5.502972 1.908173e-04 4.974237e-03
## 1448870_at -0.8289029 8.425605 -5.502940 1.908264e-04 4.974237e-03
## 1429947_a_at 2.2287146 5.514020 5.498392 1.921302e-04 4.987000e-03
## 1417604_at -1.0299179 6.979559 -5.497290 1.924476e-04 4.987000e-03
## 1437396_at -0.7721644 3.756076 -5.496628 1.926385e-04 4.987000e-03
## 1449799_s_at -1.8327840 9.288696 -5.492402 1.938617e-04 5.007209e-03
## 1418536_at 2.0912556 10.722648 5.489544 1.946935e-04 5.017239e-03
## 1448987_at 0.9292090 13.282485 5.480756 1.972758e-04 5.061368e-03
## 1425503_at -1.2219632 7.950079 -5.480672 1.973008e-04 5.061368e-03
## 1417851_at 4.3827875 7.189118 5.475672 1.987861e-04 5.087934e-03
## 1417663_a_at 0.5518705 8.710819 5.473866 1.993257e-04 5.090231e-03
## 1423721_at -0.8595982 8.623872 -5.471003 2.001840e-04 5.100634e-03
## 1451454_at 1.7368963 2.991884 5.467229 2.013218e-04 5.109193e-03
## 1421096_at -1.0260796 5.608154 -5.466894 2.014231e-04 5.109193e-03
## 1416925_at -0.8770054 8.818531 -5.464773 2.020658e-04 5.114027e-03
## 1420124_s_at -0.6691253 8.095707 -5.458065 2.041127e-04 5.154302e-03
## 1423309_at 0.7465318 12.074651 5.447088 2.075099e-04 5.185724e-03
## 1417308_at 1.1134044 8.810567 5.446782 2.076056e-04 5.185724e-03
## 1417434_at 1.1019916 11.287229 5.446723 2.076240e-04 5.185724e-03
## 1416675_s_at -0.7622588 7.357193 -5.446399 2.077254e-04 5.185724e-03
## 1418191_at 2.0181855 7.613496 5.445416 2.080328e-04 5.185724e-03
## 1424349_a_at -1.0749197 12.919343 -5.445178 2.081074e-04 5.185724e-03
## 1448755_at -1.2429749 6.760981 -5.442651 2.089004e-04 5.194044e-03
## 1428146_s_at 1.2318765 11.275713 5.440156 2.096866e-04 5.194832e-03
## 1427282_a_at 1.2830980 5.221536 5.439637 2.098505e-04 5.194832e-03
## 1428217_at -0.7648059 8.882441 -5.437644 2.104812e-04 5.199068e-03
## 1452692_a_at 0.6131813 11.958046 5.422258 2.154188e-04 5.309441e-03
## 1425463_at -2.1726692 4.615705 -5.419464 2.163285e-04 5.320270e-03
## 1451119_a_at -1.8790033 6.168342 -5.417961 2.168196e-04 5.320780e-03
## 1450069_a_at -0.6302650 11.833132 -5.415780 2.175343e-04 5.326764e-03
## 1417499_at 0.8159477 9.321098 5.411343 2.189959e-04 5.350973e-03
## 1424568_at -0.9080498 5.694274 -5.409653 2.195555e-04 5.353084e-03
## 1418034_at 0.5372201 6.998972 5.401637 2.222301e-04 5.406642e-03
## 1452223_s_at -0.8792040 9.005579 -5.397230 2.237154e-04 5.426150e-03
## 1417985_at -1.3633366 6.364233 -5.396415 2.239912e-04 5.426150e-03
## 1417101_at -1.0633148 5.411446 -5.387715 2.269580e-04 5.486272e-03
## 1418280_at -1.1420395 8.191819 -5.382904 2.286163e-04 5.504543e-03
## 1455678_at 0.7276337 7.075489 5.382700 2.286869e-04 5.504543e-03
## 1431057_a_at -1.1580939 10.678899 -5.367670 2.339533e-04 5.619348e-03
## 1434341_x_at 0.9441276 9.517414 5.366022 2.345386e-04 5.621472e-03
## 1434542_at -1.1351332 9.307244 -5.361693 2.360832e-04 5.643916e-03
## 1454712_at 0.7253506 8.920490 5.360606 2.364728e-04 5.643916e-03
## 1455156_at -0.5592860 7.943194 -5.357820 2.374747e-04 5.653100e-03
## 1433508_at -0.7639271 10.254657 -5.355942 2.381521e-04 5.653100e-03
## 1424567_at -1.5739150 6.230386 -5.355377 2.383567e-04 5.653100e-03
## 1455800_x_at 0.6277387 11.678918 5.350904 2.399805e-04 5.679707e-03
## 1426291_at -0.7307476 3.755161 -5.345332 2.420197e-04 5.716010e-03
## 1418382_at -1.3415661 9.929975 -5.342571 2.430371e-04 5.728080e-03
## 1426950_at -0.9233218 6.353612 -5.329065 2.480793e-04 5.834763e-03
## 1426237_at -0.7396422 5.683605 -5.324772 2.497053e-04 5.856526e-03
## 1423816_at -0.9471367 6.710951 -5.323824 2.500658e-04 5.856526e-03
## 1424364_a_at 0.9743416 11.469844 5.322534 2.505576e-04 5.856526e-03
## 1423771_at -1.2348062 9.774800 -5.307379 2.564093e-04 5.974954e-03
## 1450668_s_at 0.6055805 11.496588 5.306686 2.566806e-04 5.974954e-03
## 1427206_at 0.7098681 7.457394 5.303084 2.580942e-04 5.995523e-03
## 1434971_x_at 0.5809925 8.757129 5.296600 2.606595e-04 6.036860e-03
## 1415992_at 0.7861291 5.224277 5.295039 2.612813e-04 6.036860e-03
## 1421883_at 0.7358855 2.432063 5.293758 2.617927e-04 6.036860e-03
## 1452173_at 1.0827075 8.847472 5.292853 2.621548e-04 6.036860e-03
## 1418318_at -2.3935233 4.673755 -5.290379 2.631468e-04 6.036860e-03
## 1428803_at -0.6622193 2.946551 -5.288639 2.638469e-04 6.036860e-03
## 1426375_s_at 0.7010237 8.376812 5.288548 2.638834e-04 6.036860e-03
## 1422411_s_at -1.3051371 9.459561 -5.286832 2.645761e-04 6.036860e-03
## 1449146_at -0.9347059 7.285411 -5.286584 2.646763e-04 6.036860e-03
## 1448293_at -0.7055832 9.383816 -5.279755 2.674525e-04 6.087908e-03
## 1426258_at 1.2823818 9.322960 5.266196 2.730561e-04 6.202979e-03
## 1426562_a_at -1.4214936 4.916599 -5.260039 2.756418e-04 6.249170e-03
## 1449040_a_at 0.7481167 9.855480 5.256473 2.771516e-04 6.270831e-03
## 1423084_at -1.1102475 9.920537 -5.248343 2.806256e-04 6.328197e-03
## 1419417_at -1.3186629 6.349880 -5.247729 2.808901e-04 6.328197e-03
## 1419012_at -1.3435184 4.900566 -5.246400 2.814629e-04 6.328197e-03
## 1418005_at 0.7519470 12.644059 5.245331 2.819245e-04 6.328197e-03
## 1448318_at 0.9198346 11.746378 5.239892 2.842861e-04 6.368572e-03
## 1452280_at -0.9527139 5.431559 -5.237314 2.854127e-04 6.372954e-03
## 1418520_at 1.0081845 7.255602 5.236713 2.856760e-04 6.372954e-03
## 1425404_a_at -0.7059321 5.527132 -5.235583 2.861717e-04 6.372954e-03
## 1418028_at -2.1092059 4.105247 -5.233448 2.871113e-04 6.381317e-03
## 1428074_at 0.9609122 7.255348 5.230604 2.883676e-04 6.396671e-03
## 1416855_at -1.2115893 10.274207 -5.227482 2.897533e-04 6.414831e-03
## 1415891_at 0.7482526 11.813162 5.222735 2.918739e-04 6.420048e-03
## 1452473_at -1.2514092 3.310617 -5.222126 2.921473e-04 6.420048e-03
## 1417141_at 1.9212315 9.928747 5.221943 2.922294e-04 6.420048e-03
## 1428745_a_at 0.8036227 7.133167 5.221877 2.922589e-04 6.420048e-03
## 1426044_a_at 2.2784236 5.067657 5.218674 2.937014e-04 6.439231e-03
## 1425204_s_at -0.9913401 5.869524 -5.216300 2.947751e-04 6.444641e-03
## 1449122_at -0.8062662 6.511275 -5.214564 2.955630e-04 6.444641e-03
## 1452654_at 0.7942493 6.659306 5.214357 2.956571e-04 6.444641e-03
## 1451744_a_at 0.6204425 8.618977 5.207024 2.990109e-04 6.490258e-03
## 1417430_at -1.4014859 7.155706 -5.206247 2.993685e-04 6.490258e-03
## 1449070_x_at -1.2802735 11.122701 -5.206025 2.994709e-04 6.490258e-03
## 1416326_at -0.6475306 12.224650 -5.203176 3.007869e-04 6.506314e-03
## 1448249_at 1.2064549 11.126471 5.196663 3.038185e-04 6.559348e-03
## 1426576_at -0.7566089 7.370423 -5.192816 3.056242e-04 6.579581e-03
## 1426708_at -0.9312972 10.250250 -5.192191 3.059188e-04 6.579581e-03
## 1423748_at 0.6536887 8.609714 5.189701 3.070950e-04 6.592345e-03
## 1423573_at -0.9201694 6.641134 -5.186106 3.088013e-04 6.597613e-03
## 1428402_at -0.8294347 2.609626 -5.185871 3.089131e-04 6.597613e-03
## 1427483_at -1.0044293 4.792482 -5.185500 3.090900e-04 6.597613e-03
## 1416053_at -1.9352507 3.544792 -5.183836 3.098839e-04 6.602104e-03
## 1416367_at 0.8836312 8.731675 5.177193 3.130757e-04 6.657567e-03
## 1438676_at 1.7913724 8.551051 5.175142 3.140680e-04 6.666137e-03
## 1422185_a_at -0.8931843 8.383608 -5.170714 3.162220e-04 6.699288e-03
## 1421921_at -0.8498209 4.792329 -5.169436 3.168467e-04 6.699975e-03
## 1425742_a_at -0.7072588 11.801763 -5.165834 3.186143e-04 6.717429e-03
## 1416382_at -0.6137920 12.076972 -5.165335 3.188597e-04 6.717429e-03
## 1424948_x_at 0.5974918 11.235307 5.157365 3.228111e-04 6.788033e-03
## 1416269_at 0.5806214 12.791011 5.153694 3.246486e-04 6.814006e-03
## 1424040_at -0.7651087 8.667104 -5.150998 3.260047e-04 6.829798e-03
## 1456590_x_at 0.5308109 11.618304 5.148860 3.270849e-04 6.839763e-03
## 1431416_a_at -0.6938541 2.611898 -5.145983 3.285440e-04 6.857598e-03
## 1422483_a_at 0.7584413 13.081122 5.140488 3.313502e-04 6.901982e-03
## 1421534_at -1.2559170 6.079787 -5.138265 3.324930e-04 6.901982e-03
## 1432558_a_at 1.4015075 4.612907 5.136543 3.333808e-04 6.901982e-03
## 1449020_at -0.6560110 8.046401 -5.136390 3.334598e-04 6.901982e-03
## 1425955_at -1.0574504 3.249805 -5.135382 3.339807e-04 6.901982e-03
## 1434937_at -0.8205683 11.184776 -5.134705 3.343310e-04 6.901982e-03
## 1417399_at -1.0205863 10.546413 -5.128119 3.377603e-04 6.952495e-03
## 1450659_at 2.0259949 5.761110 5.127648 3.380069e-04 6.952495e-03
## 1418383_at -1.5701573 8.175462 -5.120855 3.415862e-04 7.013367e-03
## 1415733_a_at 0.5422024 9.641788 5.118416 3.428810e-04 7.027197e-03
## 1420477_at -0.6025518 9.489812 -5.115753 3.443003e-04 7.043524e-03
## 1426094_at -1.4729869 7.104571 -5.114538 3.449504e-04 7.044087e-03
## 1448696_at -0.9111517 10.303067 -5.109266 3.477846e-04 7.089166e-03
## 1415941_s_at -0.6896787 7.202744 -5.103158 3.510996e-04 7.143866e-03
## 1416630_at -0.6823235 10.063990 -5.099974 3.528409e-04 7.166408e-03
## 1421344_a_at -1.0035325 6.126222 -5.096422 3.547941e-04 7.183314e-03
## 1434628_a_at -1.9028365 5.910715 -5.096041 3.550040e-04 7.183314e-03
## 1427347_s_at -0.8916077 10.006223 -5.095002 3.555781e-04 7.183314e-03
## 1422785_at -0.8031753 8.675266 -5.087783 3.595927e-04 7.251465e-03
## 1421992_a_at -0.7296784 8.139757 -5.077684 3.652895e-04 7.353240e-03
## 1450034_at 0.8152106 10.255435 5.074694 3.669942e-04 7.370182e-03
## 1422810_at 0.7335489 6.540852 5.073925 3.674342e-04 7.370182e-03
## 1435327_at -0.9620738 11.495779 -5.071539 3.688027e-04 7.383028e-03
## 1425638_at -1.3868366 7.625578 -5.069923 3.697322e-04 7.383028e-03
## 1450968_at 0.7238668 12.469626 5.069402 3.700324e-04 7.383028e-03
## 1448028_at 0.6992526 7.398426 5.066503 3.717081e-04 7.403404e-03
## 1452895_at -1.1276570 9.821980 -5.063490 3.734585e-04 7.425195e-03
## 1418885_a_at 0.6311953 11.823790 5.060553 3.751727e-04 7.446191e-03
## 1449942_a_at -0.6390371 9.110534 -5.058121 3.765987e-04 7.459258e-03
## 1439389_s_at -0.7973328 11.561787 -5.057183 3.771498e-04 7.459258e-03
## 1428090_at 0.5745478 9.410255 5.054531 3.787138e-04 7.477118e-03
## 1425731_at 0.7167627 4.453197 5.049323 3.818046e-04 7.507622e-03
## 1424968_at 0.8592194 5.301190 5.048662 3.821990e-04 7.507622e-03
## 1452626_a_at 0.9181736 7.363596 5.048577 3.822497e-04 7.507622e-03
## 1448471_a_at -0.6043272 9.662510 -5.038155 3.885234e-04 7.607342e-03
## 1422412_x_at -1.2890259 4.746536 -5.037857 3.887039e-04 7.607342e-03
## 1419758_at -0.8439180 7.343085 -5.036804 3.893442e-04 7.607342e-03
## 1437052_s_at -2.2207972 8.023632 -5.035267 3.902808e-04 7.612495e-03
## 1435326_at -0.8686259 10.878551 -5.032356 3.920611e-04 7.624357e-03
## 1426571_at -1.4763966 6.052962 -5.032069 3.922369e-04 7.624357e-03
## 1420944_at -1.6891810 7.169251 -5.023578 3.974815e-04 7.713050e-03
## 1426918_at -0.7200923 10.113281 -5.022233 3.983191e-04 7.716069e-03
## 1439435_x_at 0.6363313 11.308467 5.018658 4.005542e-04 7.739756e-03
## 1421871_at -0.9250883 11.392357 -5.018090 4.009102e-04 7.739756e-03
## 1425396_a_at 3.7370451 6.070627 5.016407 4.019682e-04 7.746962e-03
## 1430320_at -0.8227462 2.565672 -5.014559 4.031334e-04 7.756204e-03
## 1439241_x_at -0.5200408 6.651043 -5.011875 4.048316e-04 7.767723e-03
## 1431805_a_at -1.2357738 3.051387 -5.011195 4.052630e-04 7.767723e-03
## 1417968_a_at -0.8613765 8.742859 -5.009970 4.060412e-04 7.767723e-03
## 1418758_a_at -0.8037486 8.236415 -5.009283 4.064786e-04 7.767723e-03
## 1428115_a_at -0.4963049 6.206445 -5.008133 4.072116e-04 7.768608e-03
## 1451655_at 1.8723907 6.109080 5.002494 4.108271e-04 7.824389e-03
## 1424334_at -0.7473087 5.453953 -4.998905 4.131452e-04 7.855313e-03
## 1459931_a_at 0.5241389 3.003376 4.995645 4.152637e-04 7.882346e-03
## 1425084_at 3.0175765 4.531446 4.991821 4.177624e-04 7.916493e-03
## 1419061_at -0.5990685 2.468506 -4.990413 4.186869e-04 7.920744e-03
## 1423907_a_at 0.5315204 12.642969 4.985997 4.215993e-04 7.948372e-03
## 1423369_at -0.7186731 11.089414 -4.985373 4.220126e-04 7.948372e-03
## 1452207_at -0.9527035 9.868168 -4.985007 4.222551e-04 7.948372e-03
## 1426952_at -0.9637878 7.909815 -4.978830 4.263718e-04 8.012532e-03
## 1417046_at 0.5344523 6.822361 4.972841 4.304041e-04 8.074895e-03
## 1425853_s_at -1.6316165 3.054940 -4.966297 4.348555e-04 8.144902e-03
## 1427746_x_at 0.6436246 11.350846 4.965146 4.356437e-04 8.146177e-03
## 1434589_x_at -0.6082085 9.768909 -4.963804 4.365645e-04 8.148498e-03
## 1416056_a_at 0.5735989 12.748518 4.962867 4.372084e-04 8.148498e-03
## 1417374_at 1.4661960 9.189128 4.961280 4.383018e-04 8.155441e-03
## 1422558_at -1.1357299 6.120298 -4.958592 4.401596e-04 8.176560e-03
## 1425042_s_at -0.8774289 6.946142 -4.953594 4.436369e-04 8.227647e-03
## 1424271_at -0.7133194 7.842003 -4.949801 4.462953e-04 8.263402e-03
## 1416337_at 0.5425297 12.188743 4.944352 4.501435e-04 8.318787e-03
## 1450388_s_at -0.7473527 8.834855 -4.943488 4.507572e-04 8.318787e-03
## 1460411_s_at -0.7912759 6.363611 -4.942072 4.517643e-04 8.322558e-03
## 1429038_at -0.9811010 7.041627 -4.941134 4.524329e-04 8.322558e-03
## 1460583_at -0.9889987 5.958547 -4.939247 4.537805e-04 8.323780e-03
## 1448427_at 0.6722748 11.582729 4.938981 4.539708e-04 8.323780e-03
## 1422478_a_at 1.2102954 11.134385 4.936775 4.555528e-04 8.334625e-03
## 1424358_at -0.7658891 8.374940 -4.935651 4.563613e-04 8.334625e-03
## 1421045_at 0.9127126 5.965121 4.935080 4.567725e-04 8.334625e-03
## 1454716_x_at 0.5970353 13.029879 4.930702 4.599386e-04 8.378882e-03
## 1425675_s_at -0.6162176 5.897470 -4.927796 4.620528e-04 8.394291e-03
## 1423277_at -0.9538641 4.025703 -4.927500 4.622685e-04 8.394291e-03
## 1433603_at 0.7002680 11.717458 4.920177 4.676444e-04 8.478304e-03
## 1418651_at -0.7560038 6.901083 -4.918274 4.690520e-04 8.490217e-03
## 1417185_at 0.7320384 12.763411 4.917200 4.698491e-04 8.491059e-03
## 1448213_at -0.8838950 12.876936 -4.907710 4.769490e-04 8.592586e-03
## 1416164_at -1.2041752 9.587889 -4.907661 4.769861e-04 8.592586e-03
## 1417316_at 0.9007594 9.628713 4.903702 4.799820e-04 8.632809e-03
## 1422504_at 1.5207079 3.026331 4.901087 4.819714e-04 8.654829e-03
## 1423831_at -0.7385414 6.798867 -4.892760 4.883662e-04 8.755764e-03
## 1448469_at -1.3420946 10.309803 -4.890978 4.897460e-04 8.766608e-03
## 1422571_at 1.2193676 6.382225 4.889073 4.912259e-04 8.779208e-03
## 1418492_at -2.0911094 6.333518 -4.886581 4.931685e-04 8.800024e-03
## 1419442_at -1.2157859 9.262959 -4.870858 5.056156e-04 9.007921e-03
## 1448477_at -0.6244266 4.888837 -4.868333 5.076450e-04 9.029856e-03
## 1448214_at 1.1952100 8.219519 4.865196 5.101784e-04 9.060673e-03
## 1451970_at -0.8287361 7.161710 -4.858486 5.156424e-04 9.143358e-03
## 1460198_a_at 0.5601133 11.287809 4.854540 5.188845e-04 9.186449e-03
## 1419458_at -0.9169380 4.338192 -4.846655 5.254278e-04 9.285267e-03
## 1425526_a_at 1.3208230 6.897687 4.845842 5.261077e-04 9.285267e-03
## 1439267_x_at 0.5284565 12.959448 4.833855 5.362360e-04 9.449281e-03
## 1419251_at -0.6729207 6.696917 -4.831920 5.378901e-04 9.463687e-03
## 1417780_at -1.3897813 6.891954 -4.827279 5.418797e-04 9.507892e-03
## 1424808_at -1.2319798 6.463434 -4.825360 5.435378e-04 9.507892e-03
## 1454838_s_at -1.0118616 8.240736 -4.822298 5.461956e-04 9.507892e-03
## 1460351_at -0.8827525 12.034454 -4.821274 5.470880e-04 9.507892e-03
## 1424226_at 1.0897624 6.548219 4.820951 5.473690e-04 9.507892e-03
## 1426511_at -0.7377009 2.912079 -4.819981 5.482159e-04 9.507892e-03
## 1434777_at -1.0020586 6.440086 -4.819643 5.485118e-04 9.507892e-03
## 1428762_at -0.8595772 8.072839 -4.819269 5.488387e-04 9.507892e-03
## 1416779_at -0.7956188 12.368257 -4.819039 5.490394e-04 9.507892e-03
## 1417100_at -1.3038336 8.199499 -4.818785 5.492622e-04 9.507892e-03
## 1436955_at 1.2259509 6.268884 4.818345 5.496474e-04 9.507892e-03
## 1431058_at -0.7340602 4.623459 -4.816100 5.516180e-04 9.527412e-03
## 1438680_at -1.4608512 5.797901 -4.814874 5.526968e-04 9.531493e-03
## 1417892_a_at 0.8966080 6.740914 4.811080 5.560508e-04 9.574737e-03
## 1425985_s_at -1.3874106 4.777229 -4.807498 5.592362e-04 9.602359e-03
## 1426655_a_at -0.8033118 5.809780 -4.807368 5.593525e-04 9.602359e-03
## 1420657_at 1.3921993 7.185637 4.805787 5.607651e-04 9.612024e-03
## 1419975_at 0.6052667 7.324692 4.803330 5.629678e-04 9.635144e-03
## 1418109_at -0.7941269 3.099257 -4.802386 5.638173e-04 9.635144e-03
## 1425436_x_at 2.2593054 2.894636 4.799387 5.665222e-04 9.666765e-03
## 1419310_s_at 0.7472588 5.619480 4.797408 5.683152e-04 9.670302e-03
## 1418117_at 0.5909222 5.623473 4.797272 5.684391e-04 9.670302e-03
## 1451190_a_at 1.2309603 9.072167 4.788872 5.761171e-04 9.768391e-03
## 1434489_at -0.7892694 4.739051 -4.788410 5.765424e-04 9.768391e-03
## 1459890_s_at 0.6973542 8.649441 4.788136 5.767953e-04 9.768391e-03
## 1423346_at -0.6004943 11.834690 -4.783876 5.807358e-04 9.820425e-03
## 1423895_a_at -0.6027000 10.459223 -4.780042 5.843071e-04 9.828751e-03
## 1425507_at 0.5381084 8.086849 4.779964 5.843798e-04 9.828751e-03
## 1416357_a_at -1.2277169 8.507230 -4.779813 5.845209e-04 9.828751e-03
## 1451152_a_at -1.5108796 8.596884 -4.779618 5.847034e-04 9.828751e-03
## 1435232_x_at 0.5408076 9.884766 4.777929 5.862847e-04 9.840710e-03
## 1416698_a_at -0.6708698 10.967449 -4.774456 5.895511e-04 9.878441e-03
## 1456088_at -0.5587435 9.913453 -4.773684 5.902790e-04 9.878441e-03
## 1424683_at 1.7622189 8.529018 4.764920 5.986178e-04 9.991432e-03
## 1448632_at 0.8038983 9.648954 4.764733 5.987970e-04 9.991432e-03
## B
## 1448377_at 16.949540867
## 1418945_at 15.965920366
## 1454881_s_at 15.549251360
## 1423253_at 15.407835730
## 1419532_at 15.173870421
## 1419063_at 15.093396085
## 1456741_s_at 14.729836813
## 1456228_x_at 13.898524187
## 1434237_at 13.759157716
## 1437718_x_at 13.653185678
## 1426442_at 13.636149423
## 1449319_at 13.319813818
## 1423327_at 13.178262183
## 1433532_a_at 12.778338378
## 1418755_at 12.768583935
## 1452418_at 11.897682805
## 1436201_x_at 11.467037435
## 1455626_at 11.405471969
## 1419646_a_at 10.981555331
## 1454651_x_at 10.092091086
## 1418457_at 10.053450771
## 1460238_at 9.994600224
## 1424890_at 9.860064106
## 1437685_x_at 9.718658923
## 1425995_s_at 9.589392730
## 1431475_a_at 9.508879238
## 1448529_at 9.318222072
## 1417275_at 9.275632244
## 1418672_at 9.167290624
## 1449033_at 9.072088189
## 1449456_a_at 9.031023476
## 1439506_at 8.856139078
## 1434342_at 8.785665019
## 1415939_at 8.482180316
## 1424338_at 8.478143724
## 1418879_at 8.471717508
## 1433855_at 8.430264041
## 1451335_at 8.250215085
## 1423396_at 8.158020546
## 1422308_a_at 8.111709596
## 1420512_at 7.992041411
## 1417447_at 7.925551248
## 1425505_at 7.741544828
## 1421811_at 7.712042336
## 1436990_s_at 7.595523974
## 1423136_at 7.566084058
## 1428891_at 7.531927018
## 1420559_a_at 7.491070300
## 1448395_at 7.363926245
## 1437324_x_at 7.351650215
## 1427038_at 7.243082969
## 1422870_at 7.229777860
## 1448730_at 7.213077099
## 1422573_at 7.156703154
## 1425506_at 7.156093899
## 1418715_at 7.094532166
## 1426154_s_at 7.078032739
## 1423294_at 7.071405816
## 1456084_x_at 6.972967666
## 1418603_at 6.671695277
## 1423292_a_at 6.643408779
## 1460412_at 6.640530453
## 1422789_at 6.628868224
## 1448211_at 6.596993173
## 1421433_at 6.596193910
## 1449433_at 6.587712139
## 1449867_at 6.571837925
## 1426513_at 6.569322533
## 1460302_at 6.438304108
## 1449252_at 6.433946725
## 1420465_s_at 6.368132164
## 1431554_a_at 6.325195212
## 1416529_at 6.251612458
## 1423577_at 6.246808547
## 1450723_at 6.242278433
## 1456584_x_at 6.048899148
## 1450992_a_at 6.031886204
## 1425464_at 5.925023967
## 1434776_at 5.888251164
## 1457776_at 5.882127628
## 1460187_at 5.864362799
## 1426869_at 5.856786205
## 1449314_at 5.819292919
## 1423608_at 5.806871078
## 1427299_at 5.790724050
## 1416832_at 5.739490182
## 1433720_s_at 5.706530171
## 1426657_s_at 5.701038385
## 1455149_at 5.699021344
## 1426592_a_at 5.695180721
## 1426530_a_at 5.659324897
## 1416105_at 5.577969086
## 1449218_at 5.539385424
## 1418057_at 5.523646648
## 1452127_a_at 5.454892070
## 1448926_at 5.348077891
## 1455796_x_at 5.340500230
## 1450455_s_at 5.326204865
## 1425137_a_at 5.275638756
## 1425475_at 5.249202709
## 1418328_at 5.217120730
## 1428781_at 5.188819110
## 1425341_at 5.184150888
## 1456691_s_at 5.160665946
## 1449249_at 5.074830669
## 1422329_a_at 5.030935565
## 1438966_x_at 4.999046424
## 1419684_at 4.958545409
## 1427320_at 4.893780969
## 1418907_at 4.871310539
## 1448816_at 4.850021101
## 1416527_at 4.827841610
## 1451031_at 4.800545204
## 1435941_at 4.795281967
## 1427183_at 4.754344567
## 1456471_x_at 4.742546161
## 1435833_at 4.741489140
## 1424099_at 4.739423515
## 1425967_a_at 4.719677628
## 1417079_s_at 4.715308082
## 1423436_at 4.656222610
## 1416236_a_at 4.652734994
## 1426261_s_at 4.617238979
## 1419693_at 4.609659979
## 1418190_at 4.609393681
## 1422904_at 4.533806940
## 1422596_at 4.507582281
## 1417781_at 4.485341587
## 1453678_at 4.398655988
## 1423405_at 4.341417672
## 1431530_a_at 4.320668480
## 1423278_at 4.262121847
## 1450869_at 4.178312590
## 1454674_at 4.154132449
## 1425468_at 4.154009342
## 1448664_a_at 4.128935731
## 1449315_at 4.126076452
## 1427300_at 4.111325515
## 1426208_x_at 4.079662396
## 1423978_at 4.041920870
## 1416468_at 4.008432059
## 1451718_at 3.984633144
## 1439036_a_at 3.975900796
## 1421035_a_at 3.969120223
## 1420664_s_at 3.950201443
## 1437621_x_at 3.932656869
## 1418545_at 3.907957336
## 1452432_at 3.898223944
## 1448415_a_at 3.878919548
## 1452048_at 3.829556994
## 1452318_a_at 3.823021030
## 1421882_a_at 3.719500452
## 1420621_a_at 3.696360088
## 1427122_at 3.695346749
## 1417040_a_at 3.683802277
## 1450377_at 3.666127683
## 1423516_a_at 3.654245924
## 1416316_at 3.641022776
## 1450286_at 3.630061105
## 1423281_at 3.627137009
## 1449824_at 3.622159130
## 1448550_at 3.610085248
## 1450652_at 3.546216923
## 1455206_at 3.528717553
## 1419309_at 3.522724555
## 1437863_at 3.506293822
## 1454714_x_at 3.487183527
## 1456573_x_at 3.473755214
## 1451047_at 3.460586707
## 1421841_at 3.460505904
## 1420842_at 3.437405368
## 1452179_at 3.421649430
## 1436845_at 3.420587336
## 1455061_a_at 3.390834842
## 1436448_a_at 3.386008851
## 1450185_a_at 3.385197978
## 1428372_at 3.322318753
## 1423135_at 3.311523887
## 1417877_at 3.306635630
## 1423437_at 3.241044962
## 1418157_at 3.237567858
## 1425163_at 3.229148076
## 1424783_a_at 3.210532434
## 1419648_at 3.152847884
## 1419762_at 3.149804919
## 1427052_at 3.144470444
## 1431028_a_at 3.130345393
## 1426677_at 3.123519409
## 1420629_a_at 3.114261003
## 1424214_at 3.110824565
## 1426522_at 3.091400027
## 1416204_at 3.089449177
## 1417552_at 3.062761103
## 1421999_at 3.020190688
## 1423363_at 2.981082813
## 1424407_s_at 2.975271122
## 1422444_at 2.971548409
## 1423307_s_at 2.969756296
## 1418804_at 2.962895065
## 1452320_at 2.943198318
## 1453839_a_at 2.942292864
## 1449079_s_at 2.935100170
## 1435162_at 2.910240078
## 1423574_s_at 2.888347673
## 1427516_a_at 2.860250914
## 1416910_at 2.856397289
## 1429054_at 2.824321122
## 1417403_at 2.823829966
## 1450686_at 2.808832826
## 1430385_a_at 2.783828273
## 1450024_at 2.781964005
## 1460409_at 2.777153059
## 1456226_x_at 2.776761420
## 1426851_a_at 2.768208095
## 1428401_at 2.767499960
## 1418604_at 2.737307367
## 1416564_at 2.729440273
## 1427482_a_at 2.729320350
## 1419470_at 2.719100201
## 1436031_at 2.714940365
## 1423109_s_at 2.701611265
## 1438932_at 2.667088753
## 1427442_a_at 2.650542677
## 1417497_at 2.629726984
## 1417411_at 2.624978318
## 1426852_x_at 2.587343971
## 1450021_at 2.586551366
## 1423908_at 2.581568551
## 1417404_at 2.562033219
## 1426410_at 2.543101168
## 1425336_x_at 2.535862183
## 1451339_at 2.524261004
## 1426873_s_at 2.523812762
## 1422671_s_at 2.513323733
## 1419469_at 2.488674701
## 1424133_at 2.484355899
## 1427127_x_at 2.483292422
## 1450826_a_at 2.475464515
## 1424921_at 2.469765657
## 1423108_at 2.439868316
## 1419314_at 2.422336772
## 1435820_x_at 2.420904827
## 1422962_a_at 2.419148366
## 1424838_at 2.402504252
## 1417782_at 2.396762051
## 1449499_at 2.381333815
## 1423153_x_at 2.371761147
## 1424316_at 2.349870240
## 1416554_at 2.339751495
## 1417196_s_at 2.300916837
## 1441618_at 2.287639574
## 1448754_at 2.257568910
## 1436934_s_at 2.248886480
## 1424037_at 2.229997098
## 1418500_at 2.222934223
## 1429369_at 2.188905691
## 1426260_a_at 2.184870296
## 1423753_at 2.175339256
## 1426604_at 2.164896525
## 1422445_at 2.141984576
## 1448299_at 2.134291858
## 1424485_at 2.132761919
## 1428145_at 2.132752956
## 1423890_x_at 2.117449299
## 1450876_at 2.115284642
## 1426998_at 2.115282750
## 1420907_at 2.099011704
## 1418666_at 2.090335279
## 1451447_at 2.085892825
## 1448494_at 2.076070835
## 1415854_at 2.068983231
## 1417373_a_at 2.062370828
## 1416369_at 2.047321316
## 1428068_at 2.041637712
## 1418497_at 2.041371594
## 1438385_s_at 2.022196354
## 1433543_at 2.010879479
## 1423769_at 2.003947919
## 1451961_a_at 1.967481618
## 1435458_at 1.962613324
## 1449078_at 1.960543243
## 1437218_at 1.956155074
## 1424505_at 1.955230312
## 1455007_s_at 1.937808008
## 1427126_at 1.936245819
## 1419136_at 1.930317065
## 1438933_x_at 1.926361199
## 1452206_at 1.914494324
## 1424223_at 1.897501814
## 1430172_a_at 1.883249661
## 1434579_x_at 1.876928311
## 1417416_at 1.874928674
## 1415933_a_at 1.870743857
## 1449875_s_at 1.855767606
## 1452091_a_at 1.854157817
## 1435184_at 1.853455559
## 1416136_at 1.851864444
## 1448735_at 1.844446601
## 1438640_x_at 1.837591549
## 1451002_at 1.833426660
## 1427997_at 1.801441817
## 1448201_at 1.794655805
## 1439364_a_at 1.776696224
## 1420843_at 1.771885436
## 1449271_a_at 1.761242275
## 1416371_at 1.750321621
## 1450974_at 1.749867717
## 1423450_a_at 1.746407432
## 1434372_at 1.738674165
## 1428107_at 1.729353982
## 1452382_at 1.725740135
## 1419905_s_at 1.722936916
## 1421855_at 1.716302727
## 1454898_s_at 1.699938724
## 1419100_at 1.692804474
## 1449168_a_at 1.684997933
## 1452751_at 1.669904547
## 1434272_at 1.649859796
## 1425652_s_at 1.640924948
## 1418453_a_at 1.599792926
## 1448416_at 1.595375933
## 1417956_at 1.591497898
## 1450696_at 1.567957590
## 1416712_at 1.564865346
## 1429359_s_at 1.557797562
## 1449550_at 1.555035040
## 1420542_at 1.534330486
## 1448319_at 1.530882039
## 1437341_x_at 1.510780399
## 1437133_x_at 1.489379546
## 1422606_at 1.482945586
## 1455447_at 1.460371869
## 1425784_a_at 1.429184990
## 1425476_at 1.419971869
## 1452411_at 1.397160951
## 1433670_at 1.380518214
## 1426127_x_at 1.373591916
## 1420447_at 1.363107239
## 1427123_s_at 1.335916012
## 1456642_x_at 1.307740484
## 1428330_at 1.306735984
## 1415877_at 1.297995887
## 1451653_a_at 1.296136458
## 1451504_at 1.290132080
## 1455961_at 1.282641776
## 1425810_a_at 1.278795855
## 1423414_at 1.276524146
## 1455283_x_at 1.266731586
## 1420906_at 1.256175442
## 1421007_at 1.246103838
## 1449466_at 1.245713944
## 1455978_a_at 1.234870257
## 1450955_s_at 1.234262842
## 1426593_a_at 1.221119535
## 1451041_at 1.213961744
## 1438115_a_at 1.209349112
## 1431099_at 1.206483620
## 1417198_at 1.203251054
## 1434230_at 1.192325812
## 1434340_at 1.190189545
## 1425538_x_at 1.187670232
## 1418709_at 1.181593999
## 1449551_at 1.164399934
## 1417320_at 1.164137243
## 1416411_at 1.160790898
## 1416639_at 1.159605238
## 1448153_at 1.152736773
## 1449350_at 1.137416198
## 1448428_at 1.128910862
## 1448672_a_at 1.126125897
## 1428319_at 1.115801821
## 1449416_at 1.108636254
## 1422905_s_at 1.108472879
## 1426978_at 1.082131694
## 1427954_at 1.072858019
## 1422502_at 1.064541287
## 1425143_a_at 1.063482242
## 1448024_at 1.062563454
## 1426965_at 1.059012013
## 1423407_a_at 1.054543528
## 1426543_x_at 1.038788370
## 1427508_at 1.030327665
## 1417437_at 1.020126013
## 1429183_at 0.996617290
## 1450757_at 0.995328467
## 1416612_at 0.995267328
## 1434436_at 0.993628945
## 1455494_at 0.987963330
## 1455042_at 0.985110528
## 1425528_at 0.983853201
## 1422033_a_at 0.982784255
## 1426658_x_at 0.981576431
## 1448510_at 0.979830158
## 1426542_at 0.979721980
## 1423661_s_at 0.979571769
## 1423223_a_at 0.973986282
## 1450663_at 0.971142037
## 1425189_a_at 0.958022267
## 1422912_at 0.946257384
## 1417864_at 0.945856190
## 1427658_at 0.942477733
## 1422465_a_at 0.939448446
## 1453913_a_at 0.938059396
## 1418415_at 0.928172511
## 1427540_at 0.927373193
## 1448940_at 0.926403974
## 1427425_at 0.910116055
## 1427459_at 0.910110712
## 1432273_a_at 0.903700752
## 1424184_at 0.902952905
## 1448448_a_at 0.898381565
## 1427255_s_at 0.874127604
## 1448649_at 0.869172763
## 1421960_at 0.863449962
## 1423891_at 0.841995657
## 1425811_a_at 0.835182553
## 1423242_at 0.828442806
## 1437671_x_at 0.819973906
## 1417212_at 0.813395329
## 1455315_at 0.805668831
## 1418980_a_at 0.804749778
## 1448433_a_at 0.801780878
## 1427957_at 0.800809145
## 1448859_at 0.799921876
## 1417520_at 0.795434129
## 1425608_at 0.792312860
## 1456292_a_at 0.779796620
## 1435767_at 0.771607386
## 1419485_at 0.758115325
## 1433883_at 0.755158535
## 1420449_at 0.751012958
## 1425177_at 0.731205484
## 1452178_at 0.731077231
## 1448870_at 0.731028088
## 1429947_a_at 0.723981117
## 1417604_at 0.722272699
## 1437396_at 0.721246592
## 1449799_s_at 0.714695635
## 1418536_at 0.710264568
## 1448987_at 0.696628624
## 1425503_at 0.696497681
## 1417851_at 0.688736032
## 1417663_a_at 0.685930247
## 1423721_at 0.681483978
## 1451454_at 0.675618310
## 1421096_at 0.675097780
## 1416925_at 0.671801333
## 1420124_s_at 0.661370807
## 1423309_at 0.644289007
## 1417308_at 0.643812015
## 1417434_at 0.643720397
## 1416675_s_at 0.643215267
## 1418191_at 0.641684939
## 1424349_a_at 0.641313984
## 1448755_at 0.637378249
## 1428146_s_at 0.633490875
## 1427282_a_at 0.632682647
## 1428217_at 0.629577304
## 1452692_a_at 0.605582816
## 1425463_at 0.601222461
## 1451119_a_at 0.598876280
## 1450069_a_at 0.595471142
## 1417499_at 0.588541918
## 1424568_at 0.585901355
## 1418034_at 0.573372758
## 1452223_s_at 0.566480097
## 1417985_at 0.565205521
## 1417101_at 0.551590986
## 1418280_at 0.544058674
## 1455678_at 0.543738903
## 1431057_a_at 0.520183104
## 1434341_x_at 0.517597919
## 1434542_at 0.510806646
## 1454712_at 0.509100838
## 1455156_at 0.504726545
## 1433508_at 0.501779662
## 1424567_at 0.500891327
## 1455800_x_at 0.493867000
## 1426291_at 0.485113304
## 1418382_at 0.480773692
## 1426950_at 0.459530669
## 1426237_at 0.452772368
## 1423816_at 0.451280019
## 1424364_a_at 0.449247278
## 1423771_at 0.425365998
## 1450668_s_at 0.424272305
## 1427206_at 0.418591169
## 1434971_x_at 0.408360503
## 1415992_at 0.405896240
## 1421883_at 0.403873433
## 1452173_at 0.402443777
## 1418318_at 0.398537068
## 1428803_at 0.395789030
## 1426375_s_at 0.395645952
## 1422411_s_at 0.392934127
## 1449146_at 0.392542645
## 1448293_at 0.381749906
## 1426258_at 0.360303466
## 1426562_a_at 0.350555569
## 1449040_a_at 0.344906247
## 1423084_at 0.332023170
## 1419417_at 0.331048795
## 1419012_at 0.328941801
## 1418005_at 0.327247313
## 1448318_at 0.318620100
## 1452280_at 0.314529967
## 1418520_at 0.313576462
## 1425404_a_at 0.311783452
## 1418028_at 0.308393458
## 1428074_at 0.303878416
## 1416855_at 0.298920970
## 1415891_at 0.291380170
## 1452473_at 0.290412023
## 1417141_at 0.290121276
## 1428745_a_at 0.290016964
## 1426044_a_at 0.284925661
## 1425204_s_at 0.281152100
## 1449122_at 0.278391686
## 1452654_at 0.278062506
## 1451744_a_at 0.266398665
## 1417430_at 0.265162561
## 1449070_x_at 0.264808938
## 1416326_at 0.260275132
## 1448249_at 0.249905570
## 1426576_at 0.243778171
## 1426708_at 0.242781913
## 1423748_at 0.238814219
## 1423573_at 0.233085257
## 1428402_at 0.232710995
## 1427483_at 0.232119034
## 1416053_at 0.229466436
## 1416367_at 0.218871508
## 1438676_at 0.215599722
## 1422185_a_at 0.208532910
## 1421921_at 0.206492590
## 1425742_a_at 0.200740855
## 1416382_at 0.199944918
## 1424948_x_at 0.187211833
## 1416269_at 0.181343788
## 1424040_at 0.177034261
## 1456590_x_at 0.173614316
## 1431416_a_at 0.169013103
## 1422483_a_at 0.160220594
## 1421534_at 0.156661542
## 1432558_a_at 0.153904835
## 1449020_at 0.153660049
## 1425955_at 0.152046308
## 1434937_at 0.150962927
## 1417399_at 0.140413753
## 1450659_at 0.139659179
## 1418383_at 0.128770526
## 1415733_a_at 0.124859957
## 1420477_at 0.120590190
## 1426094_at 0.118640132
## 1448696_at 0.110182399
## 1415941_s_at 0.100376971
## 1416630_at 0.095263450
## 1421344_a_at 0.089557893
## 1434628_a_at 0.088946517
## 1427347_s_at 0.087276351
## 1422785_at 0.075673006
## 1421992_a_at 0.059428250
## 1450034_at 0.054616750
## 1422810_at 0.053378519
## 1435327_at 0.049536600
## 1425638_at 0.046935171
## 1450968_at 0.046096430
## 1448028_at 0.041427315
## 1452895_at 0.036572322
## 1418885_a_at 0.031839925
## 1449942_a_at 0.027919676
## 1439389_s_at 0.026408553
## 1428090_at 0.022132280
## 1425731_at 0.013733180
## 1424968_at 0.012666222
## 1452626_a_at 0.012529236
## 1448471_a_at -0.004291992
## 1422412_x_at -0.004772148
## 1419758_at -0.006472665
## 1437052_s_at -0.008955301
## 1435326_at -0.013657842
## 1426571_at -0.014120842
## 1420944_at -0.027844355
## 1426918_at -0.030019283
## 1439435_x_at -0.035800446
## 1421871_at -0.036718293
## 1425396_a_at -0.039441287
## 1430320_at -0.042431643
## 1439241_x_at -0.046774596
## 1431805_a_at -0.047874839
## 1417968_a_at -0.049856871
## 1418758_a_at -0.050969039
## 1428115_a_at -0.052830386
## 1451655_at -0.061962359
## 1424334_at -0.067774920
## 1459931_a_at -0.073058516
## 1425084_at -0.079255872
## 1419061_at -0.081539225
## 1423907_a_at -0.088699752
## 1423369_at -0.089712089
## 1452207_at -0.090305292
## 1426952_at -0.100327136
## 1417046_at -0.110049750
## 1425853_s_at -0.120677382
## 1427746_x_at -0.122547651
## 1434589_x_at -0.124728519
## 1416056_a_at -0.126250733
## 1417374_at -0.128830452
## 1422558_at -0.133198920
## 1425042_s_at -0.141326247
## 1424271_at -0.147496351
## 1416337_at -0.156363043
## 1450388_s_at -0.157770085
## 1460411_s_at -0.160074777
## 1429038_at -0.161602040
## 1460583_at -0.164673484
## 1448427_at -0.165106545
## 1422478_a_at -0.168698882
## 1424358_at -0.170530016
## 1421045_at -0.171460164
## 1454716_x_at -0.178593258
## 1425675_s_at -0.183329006
## 1423277_at -0.183810976
## 1433603_at -0.195750344
## 1418651_at -0.198853660
## 1417185_at -0.200606788
## 1448213_at -0.216092769
## 1416164_at -0.216173070
## 1417316_at -0.222637704
## 1422504_at -0.226908027
## 1423831_at -0.240516317
## 1448469_at -0.243429005
## 1422571_at -0.246544061
## 1418492_at -0.250618594
## 1419442_at -0.276349812
## 1448477_at -0.280484649
## 1448214_at -0.285623215
## 1451970_at -0.296619181
## 1460198_a_at -0.303088641
## 1419458_at -0.316022602
## 1425526_a_at -0.317357159
## 1439267_x_at -0.337036785
## 1419251_at -0.340215148
## 1417780_at -0.347841249
## 1424808_at -0.350994138
## 1454838_s_at -0.356027795
## 1460351_at -0.357712335
## 1424226_at -0.358242205
## 1426511_at -0.359837624
## 1434777_at -0.360394456
## 1428762_at -0.361009200
## 1416779_at -0.361386442
## 1417100_at -0.361805152
## 1436955_at -0.362528660
## 1431058_at -0.366221555
## 1438680_at -0.368237647
## 1417892_a_at -0.374480329
## 1425985_s_at -0.380374495
## 1426655_a_at -0.380589047
## 1420657_at -0.383191565
## 1419975_at -0.387236551
## 1418109_at -0.388792281
## 1425436_x_at -0.393730255
## 1419310_s_at -0.396990530
## 1418117_at -0.397215409
## 1451190_a_at -0.411057639
## 1434489_at -0.411818968
## 1459890_s_at -0.412271449
## 1423346_at -0.419295473
## 1423895_a_at -0.425620101
## 1425507_at -0.425748525
## 1416357_a_at -0.425997515
## 1451152_a_at -0.426319576
## 1435232_x_at -0.429105776
## 1416698_a_at -0.434837156
## 1456088_at -0.436109989
## 1424683_at -0.450580401
## 1448632_at -0.450889148
## [1] "Number of genes in this list:"
## [1] 0
x=topTable(Vis_ebfits,number=50000, coef=3,adjust="fdr",sort.by="P"); y <- x[x$adj.P.Val < 0.01 & (x$logFC > 2 | x$logFC < -2) & x$AveExpr > 10,]; y; print("Number of genes in this list:"); length(y$ID)
## logFC AveExpr t P.Value adj.P.Val
## 1436990_s_at 2.255748 12.42499 11.300791 2.317336e-07 5.825784e-05
## 1420465_s_at 6.160727 12.09481 9.999853 7.895272e-07 1.258017e-04
## 1433720_s_at 2.342041 10.82936 9.358224 1.518131e-06 1.929744e-04
## 1449218_at 3.678415 11.28112 9.202085 1.789626e-06 2.176993e-04
## 1426208_x_at -2.080891 10.86631 -7.930036 7.462156e-06 6.073336e-04
## 1417404_at 2.489987 10.60414 6.757525 3.252775e-05 1.606928e-03
## 1418536_at 2.091256 10.72265 5.489544 1.946935e-04 5.017239e-03
## B
## 1436990_s_at 7.5955240
## 1420465_s_at 6.3681322
## 1433720_s_at 5.7065302
## 1449218_at 5.5393854
## 1426208_x_at 4.0796624
## 1417404_at 2.5620332
## 1418536_at 0.7102646
## [1] "Number of genes in this list:"
## [1] 0
results <- decideTests(Vis_ebfits, p.value=0.000005); heatDiagram(results, Vis_ebfits$coef, primary=1)
To impose a fold change cut off, and see how many genes are returned you can use the lfc modifier for topTable, here we show the results for fold changes of 5,4,3 and 2 in terms of the number of probesets.
nrow(topTable(Vis_ebfits, coef=3, number=10000, lfc=5))
## [1] 22
nrow(topTable(Vis_ebfits, coef=3, number=10000, lfc=4))
## [1] 49
nrow(topTable(Vis_ebfits, coef=3, number=10000, lfc=3))
## [1] 111
nrow(topTable(Vis_ebfits, coef=3, number=10000, lfc=2))
## [1] 270
# Get a list for probesets with a four fold change or more
probeset.list <- toptable(Vis_ebfits, coef=3, number=200, lfc=5,genelist = Vis_ebfits$genes,adjust.method = "BH",sort.by = "B")
biocLite("mouse430a2.db") # hide
library(mouse430a2.db)
#library(annotate)
#heatmap(exprs(probeset.list))
In order to annotate the probesets into gene symbols we need to install and load the associated database package and the annotate package, then we can extract the probeset ID’s from the topTable results, and match the symbols
library(annotate)
## Loading required package: XML
gene.symbols <- getSYMBOL(rownames(probeset.list), "mouse430a2") #此处用 rownames(probeset.list) 代替 probeset.list$ID,因为目前这个版本的limma似乎不会生成 ID列名
results <- cbind(probeset.list, gene.symbols)
head(results)
## logFC t P.Value adj.P.Val B
## 1448377_at -7.675489 -31.84527 4.084632e-12 4.620944e-08 16.94954
## 1418945_at 6.717054 27.86929 1.722140e-11 9.741288e-08 15.96592
## 1454881_s_at -8.240210 -26.42883 3.049165e-11 1.042400e-07 15.54925
## 1423253_at 5.869459 25.96702 3.685671e-11 1.042400e-07 15.40784
## 1419532_at 6.377121 25.23044 5.021411e-11 1.051779e-07 15.17387
## 1419063_at 5.184754 24.98461 5.578250e-11 1.051779e-07 15.09340
## gene.symbols
## 1448377_at Slpi
## 1418945_at Mmp3
## 1454881_s_at Upk3b
## 1423253_at Mpz
## 1419532_at Il1r2
## 1419063_at Ugt8a
write.table(results, "results.txt", sep="\t", quote=FALSE)