Using the “cars” dataset in R, build a linear model for stopping distance as a function of speed and replicate the analysis of your textbook chapter 3 (visualization, quality evaluation of the model, and residual analysis.)
Step 1: using lm function to build the model
cars_lm <- lm(dist~speed,data=cars)
(cars_lm)
##
## Call:
## lm(formula = dist ~ speed, data = cars)
##
## Coefficients:
## (Intercept) speed
## -17.579 3.932
The linear model (y = a0 + a1x1) is:
y = -17.579 + 3.932x
Step 2: plot lm model
plot(cars$dist, cars$speed)
abline(cars_lm, col="red")
Step 3: check summary
summary(cars_lm)
##
## Call:
## lm(formula = dist ~ speed, data = cars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29.069 -9.525 -2.272 9.215 43.201
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.5791 6.7584 -2.601 0.0123 *
## speed 3.9324 0.4155 9.464 1.49e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
plot(cars_lm$residuals)
Scatter plot: The residual values are concentraded between 20 to 60, but it is hard to determine the distribution of residual values
plot(fitted(cars_lm), resid(cars_lm))
Now, let’s try QQ plot.
qqnorm(resid(cars_lm))
qqline(resid(cars_lm))
From the QQ plot, the residual values are normal distributed.