Take a look at dataset
head(airquality)
##   Ozone Solar.R Wind Temp Month Day
## 1    41     190  7.4   67     5   1
## 2    36     118  8.0   72     5   2
## 3    12     149 12.6   74     5   3
## 4    18     313 11.5   62     5   4
## 5    NA      NA 14.3   56     5   5
## 6    28      NA 14.9   66     5   6
Visualize the data
plot(airquality$Temp, airquality$Wind , xlab = "Temperature", ylab = "Wind Speed")

The Linear Model Fuction
attach(airquality)
liner <- lm(Wind ~ Temp)

liner
## 
## Call:
## lm(formula = Wind ~ Temp)
## 
## Coefficients:
## (Intercept)         Temp  
##     23.2337      -0.1705
Evaluate the quality of the model
summary(liner)
## 
## Call:
## lm(formula = Wind ~ Temp)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.5784 -2.4489 -0.2261  1.9853  9.7398 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 23.23369    2.11239  10.999  < 2e-16 ***
## Temp        -0.17046    0.02693  -6.331 2.64e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.142 on 151 degrees of freedom
## Multiple R-squared:  0.2098, Adjusted R-squared:  0.2045 
## F-statistic: 40.08 on 1 and 151 DF,  p-value: 2.642e-09
Resudual Analysis
plot(fitted(liner), resid(liner))

qqnorm(resid(liner))
qqline(resid(liner))