1 FRESA.CAD Benchmark

1.1 Leukemia Cancer Data Set


LeukemiaA <- read.delim("./Leukemia/Leukemia.txt")
#LeukemiaA <- read.delim("./Leukemia.txt")
Leukemia <- LeukemiaA[,-1]
rownames(Leukemia) <- LeukemiaA[,1]

LeukFRESA <- FRESA.Model(formula = Status ~ 1,data = Leukemia,repeats = 20)

1.2 Benchmark


reps <- 30;
topIncluded <- 100;

cp <- CVBenchmark(theData = Leukemia, theOutcome = "Status", reps = reps, fraction = 0.80, topIncluded = topIncluded)


elapcol <- names(cp$times[[1]]) == "elapsed"
cputimes <- list(Fresa = mean(cp$times$fresatime[ elapcol ]),LASSO = mean(cp$times$LASSOtime[ elapcol ]),RF = mean(cp$times$RFtime[ elapcol ]),SVM = mean(cp$times$SVMtime[ elapcol ]),FeaLect=mean(cp$times$FeaLecttime[ elapcol ]))

featsize <- list(Fresa = mean(cp$featSize$FRESASize),LASSO = mean(cp$featSize$LASSOSize),Univ = mean(cp$featSize$UNIVSize))

1.2.1 Results

#The Times
pander::pander(cputimes)
  • Fresa: 7.232
  • LASSO: 0.6897
  • RF: 30.03
  • SVM: 4.751
  • FeaLect: 128.2
pander::pander(featsize)
  • Fresa: 13.57
  • LASSO: 21.57
  • Univ: 1332

plotBEREvolution(cp,40,main="Balanced Error Rate", location="topright")



bp <- barPlotCiError(as.matrix(cp$errorciTable),metricname="Balanced Error",thesets=thesets,themethod=theMethod,main="Balanced Error",offsets = c(0.5,0.05),args.legend = list(x = "topright"))


pander::pander(bp$barMatrix,caption = "Balanced Error Rate",round = 3)
Balanced Error Rate
  Default Classifier Filtered SVM Classifier
B:SWiMS 0.041 0.081
LASSO 0.051 0.031
RF 0.04 0.041
SVM 0.22 0.031
pander::pander(bp$ciTable,caption = "Balanced Error Rate with 95%CI",round = 3)
Balanced Error Rate with 95%CI
  Balanced Error lower upper
Default Classifier 0.041 0.003 0.174
Default Classifier 0.051 0.005 0.187
Default Classifier 0.04 0.005 0.168
Default Classifier 0.22 0.122 0.363
Filtered SVM Classifier 0.081 0.015 0.229
Filtered SVM Classifier 0.031 0.001 0.158
Filtered SVM Classifier 0.041 0.003 0.174
Filtered SVM Classifier 0.031 0.001 0.158


bp <- barPlotCiError(as.matrix(cp$accciTable),metricname="Accuracy",thesets=thesets,themethod=theMethod,main="Accuracy",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"))

pander::pander(bp$barMatrix,caption = "Accuracy",round = 3)
Accuracy
  Default Classifier Filtered SVM Classifier
B:SWiMS 0.958 0.931
LASSO 0.958 0.972
RF 0.972 0.958
SVM 0.847 0.972
pander::pander(bp$ciTable,caption = "Accuracy with 95%CI",round = 3)
Accuracy with 95%CI
  Accuracy lower upper
Default Classifier 0.958 0.883 0.991
Default Classifier 0.958 0.883 0.991
Default Classifier 0.972 0.903 0.997
Default Classifier 0.847 0.743 0.921
Filtered SVM Classifier 0.931 0.845 0.977
Filtered SVM Classifier 0.972 0.903 0.997
Filtered SVM Classifier 0.958 0.883 0.991
Filtered SVM Classifier 0.972 0.903 0.997


bp <- barPlotCiError(as.matrix(cp$aucTable),metricname="ROC AUC",thesets=thesets,themethod=theMethod,main="ROC AUC",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"))

pander::pander(bp$barMatrix,caption = "ROC AUC",round = 3)
ROC AUC
  Default Classifier Filtered SVM Classifier
B:SWiMS 1 1
LASSO 1 1
RF 1 1
SVM 1 1
pander::pander(bp$ciTable,caption = "ROC AUC with 95%CI",round = 3)
ROC AUC with 95%CI
  ROC AUC lower upper
Default Classifier 1 0.821 1
Default Classifier 1 0.909 1
Default Classifier 1 0.75 1
Default Classifier 1 0.841 1
Filtered SVM Classifier 1 0.932 1
Filtered SVM Classifier 1 0.907 1
Filtered SVM Classifier 1 0.889 1
Filtered SVM Classifier 1 0.864 1

1.3 Feature Summaries

gain <- length(LeukFRESA$BSWiMS.models$formula.list)/20
gplots::heatmap.2(gain*LeukFRESA$BSWiMS.models$bagging$formulaNetwork[1:30,1:30],trace="none",mar=c(10,10),main="B:SWiMS Formula Network")

pander::pander(summary(LeukFRESA$BSWiMS.model,caption="Leukemia",round = 3))
  • coefficients:

    Table continues below
      Estimate lower OR upper u.Accuracy
    M23197_at 0.001803 1.001 1.002 1.002 0.9399
    M27891_at 0.0001896 1 1 1 0.9394
    M31523_at -0.0008728 0.9987 0.9991 0.9995 0.9356
    X95735_at 0.0001997 1 1 1 0.9365
    M92287_at -0.0001946 0.9998 0.9998 0.9998 0.9051
    L09209_s_at 0.003881 0.994 1.004 1.014 0.9039
    M11722_at -0.0002362 0.9997 0.9998 0.9999 0.9184
    U46499_at 0.0002396 1 1 1 0.9119
    M84526_at 0.0002106 1 1 1 0.9184
    D88422_at 0.0004971 1 1 1.001 0.9005
    X68560_at -0.01333 0.9716 0.9868 1.002 0.7496
    J05243_at -0.002204 0.9831 0.9978 1.013 0.8983
    X62654_rna1_at 0.0009264 0.9964 1.001 1.005 0.8638
    X59417_at -0.0001517 0.9997 0.9998 1 0.8936
    M63379_at 0.0001173 1 1 1 0.8522
    U05259_rna1_at -0.0001417 0.9997 0.9999 1 0.8749
    M96326_rna1_at 1.815e-05 1 1 1 0.8771
    M83652_s_at 0.0001332 1 1 1 0.8759
    M31211_s_at -8.212e-05 0.9999 0.9999 0.9999 0.8493
    U16954_at -0.0008586 0.9985 0.9991 0.9998 0.7943
    X51521_at -0.0001253 0.9998 0.9999 0.9999 0.7851
    X17042_at 1.266e-05 1 1 1 0.8369
    HG1612.HT1612_at -0.0002277 0.9996 0.9998 0.9999 0.8392
    X85116_rna1_s_at 4.495e-05 1 1 1 0.8014
    M13690_s_at 0.0006337 1.001 1.001 1.001 0.7695
    U77604_at 0.0001655 1 1 1 0.6702
    S76617_at -0.0001731 0.9998 0.9998 0.9999 0.7926
    U89922_s_at -4.13e-06 1 1 1 0.7376
    Table continues below
      r.Accuracy full.Accuracy u.AUC r.AUC full.AUC
    M23197_at 0.5 0.9399 0.9399 0.5 0.9399
    M27891_at 0.5 0.9394 0.9394 0.5 0.9394
    M31523_at 0.5 0.9356 0.9356 0.5 0.9356
    X95735_at 0.5 0.9365 0.9365 0.5 0.9365
    M92287_at 0.5 0.9051 0.9051 0.5 0.9051
    L09209_s_at 0.5371 0.9188 0.9039 0.5371 0.9188
    M11722_at 0.5 0.9184 0.9184 0.5 0.9184
    U46499_at 0.5 0.9119 0.9119 0.5 0.9119
    M84526_at 0.5 0.9184 0.9184 0.5 0.9184
    D88422_at 0.5 0.9005 0.9005 0.5 0.9005
    X68560_at 0.861 0.9567 0.7496 0.861 0.9567
    J05243_at 0.6582 0.9266 0.8983 0.6582 0.9266
    X62654_rna1_at 0.8007 0.95 0.8638 0.8007 0.95
    X59417_at 0.7009 0.9441 0.8936 0.7009 0.9441
    M63379_at 0.5 0.8522 0.8522 0.5 0.8522
    U05259_rna1_at 0.6246 0.9235 0.8749 0.6246 0.9235
    M96326_rna1_at 0.5 0.8771 0.8771 0.5 0.8771
    M83652_s_at 0.6851 0.9121 0.8759 0.6851 0.9121
    M31211_s_at 0.5 0.8493 0.8493 0.5 0.8493
    U16954_at 0.7819 0.9433 0.7943 0.7819 0.9433
    X51521_at 0.6759 0.8922 0.7851 0.6759 0.8922
    X17042_at 0.5629 0.8635 0.8369 0.5629 0.8635
    HG1612.HT1612_at 0.7237 0.9261 0.8392 0.7237 0.9261
    X85116_rna1_s_at 0.8466 0.9167 0.8014 0.8466 0.9167
    M13690_s_at 0.839 0.9532 0.7695 0.839 0.9532
    U77604_at 0.7955 0.9043 0.6702 0.7955 0.9043
    S76617_at 0.8191 0.9202 0.7926 0.8191 0.9202
    U89922_s_at 0.5 0.7376 0.7376 0.5 0.7376
      IDI NRI z.IDI z.NRI
    M23197_at 0.8177 1.76 20.28 18.66
    M27891_at 0.8107 1.757 20.79 19.16
    M31523_at 0.798 1.743 19.55 18.3
    X95735_at 0.787 1.746 18.98 18.22
    M92287_at 0.7154 1.621 15.74 13.9
    L09209_s_at 0.6842 1.675 15.68 Inf
    M11722_at 0.7223 1.674 15.89 15.72
    U46499_at 0.6412 1.648 14.69 14.59
    M84526_at 0.728 1.674 16.45 16.49
    D88422_at 0.7214 1.602 15.92 13.99
    X68560_at 0.2802 1.643 6.524 Inf
    J05243_at 0.4839 1.68 9.96 1.873e+306
    X62654_rna1_at 0.3581 1.655 7.59 16.53
    X59417_at 0.4375 1.658 9.158 15.34
    M63379_at 0.5708 1.409 11.09 9.752
    U05259_rna1_at 0.5551 1.66 10.81 19.13
    M96326_rna1_at 0.6108 1.508 12.12 11.49
    M83652_s_at 0.4761 1.416 9.628 10.5
    M31211_s_at 0.5735 1.397 11.42 9.615
    U16954_at 0.3631 1.716 7.266 22.56
    X51521_at 0.4502 1.495 8.781 11.98
    X17042_at 0.5289 1.429 10.44 10.36
    HG1612.HT1612_at 0.4498 1.643 8.949 15.22
    X85116_rna1_s_at 0.2108 1.223 5.001 9
    M13690_s_at 0.2762 1.504 5.94 11.41
    U77604_at 0.276 1.494 5.976 10.97
    S76617_at 0.273 1.496 5.728 12.29
    U89922_s_at 0.3169 0.9504 6.532 5.378
  • Accuracy: 1
  • tAUC: 1
  • bootstrap: