Recall the system of ordinary differential equations (ODEs) \[\frac{d\mathbf{x}(t)}{dt} = F(\mathbf{x}(t)).\]
Interaction amongs the variables \(\mathbf{x}=(x_1,x_2,x_3)\) and \(N=x_1+x_2 + x_3\)
Consider the following system \[\frac{dx_1}{dt} = - \beta \frac{x_1 x_2}{N} \\ \frac{dx_2}{dt} = \beta \frac{x_1 x_2}{N} - \gamma x_2 \\ \frac{dx_3}{dt} = \gamma x_2 \mbox{ and } x_2\geq0\]