DLBCL_Lymohoma_A <- read.delim("./DLBCL/DLBCL_Lymohoma_A.txt")
#DLBCL_Lymohoma_A <- read.delim("./DLBCL_Lymohoma_A.txt")
Lymphoma <- DLBCL_Lymohoma_A[,-c(1,3,4)]
rownames(Lymphoma) <- DLBCL_Lymohoma_A[,1]
LYMPFRESA <- FRESA.Model(formula = Class ~ 1,data = Lymphoma,repeats = 20)
reps <- 50;
topIncluded <- 100;
cp <- CVBenchmark(theData = Lymphoma, theOutcome = "Class", reps = reps, fraction = 0.80, topIncluded = topIncluded)
elapcol <- names(cp$times[[1]]) == "elapsed"
cputimes <- list(Fresa = mean(cp$times$fresatime[ elapcol ]),LASSO = mean(cp$times$LASSOtime[ elapcol ]),RF = mean(cp$times$RFtime[ elapcol ]),SVM = mean(cp$times$SVMtime[ elapcol ]),FeaLect=mean(cp$times$FeaLecttime[ elapcol ]))
featsize <- list(Fresa = mean(cp$featSize$FRESASize),LASSO = mean(cp$featSize$LASSOSize),Univ = mean(cp$featSize$UNIVSize))
#The Times
pander::pander(cputimes)
pander::pander(featsize)
plotBEREvolution(cp,40,main="Balanced Error Rate", location="topright")
bp <- barPlotCiError(as.matrix(cp$errorciTable),metricname="Balanced Error",thesets=thesets,themethod=theMethod,main="Balanced Error",offsets = c(0.5,0.05),args.legend = list(x = "topright"))
pander::pander(bp$barMatrix,caption = "Balanced Error Rate",round = 3)
| Default Classifier | Filtered SVM Classifier | |
|---|---|---|
| B:SWiMS | 0.096 | 0.096 |
| LASSO | 0.088 | 0.105 |
| RF | 0.219 | 0.096 |
| SVM | 0.483 | 0.114 |
pander::pander(bp$ciTable,caption = "Balanced Error Rate with 95%CI",round = 3)
| Balanced Error | lower | upper | |
|---|---|---|---|
| Default Classifier | 0.096 | 0.021 | 0.261 |
| Default Classifier | 0.088 | 0.017 | 0.244 |
| Default Classifier | 0.219 | 0.101 | 0.379 |
| Default Classifier | 0.483 | 0.44 | 0.586 |
| Filtered SVM Classifier | 0.096 | 0.021 | 0.261 |
| Filtered SVM Classifier | 0.105 | 0.03 | 0.259 |
| Filtered SVM Classifier | 0.096 | 0.019 | 0.257 |
| Filtered SVM Classifier | 0.114 | 0.03 | 0.274 |
bp <- barPlotCiError(as.matrix(cp$accciTable),metricname="Accuracy",thesets=thesets,themethod=theMethod,main="Accuracy",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"))
pander::pander(bp$barMatrix,caption = "Accuracy",round = 3)
| Default Classifier | Filtered SVM Classifier | |
|---|---|---|
| B:SWiMS | 0.909 | 0.909 |
| LASSO | 0.948 | 0.948 |
| RF | 0.883 | 0.935 |
| SVM | 0.273 | 0.935 |
pander::pander(bp$ciTable,caption = "Accuracy with 95%CI",round = 3)
| Accuracy | lower | upper | |
|---|---|---|---|
| Default Classifier | 0.909 | 0.822 | 0.963 |
| Default Classifier | 0.948 | 0.872 | 0.986 |
| Default Classifier | 0.883 | 0.79 | 0.945 |
| Default Classifier | 0.273 | 0.177 | 0.386 |
| Filtered SVM Classifier | 0.909 | 0.822 | 0.963 |
| Filtered SVM Classifier | 0.948 | 0.872 | 0.986 |
| Filtered SVM Classifier | 0.935 | 0.855 | 0.979 |
| Filtered SVM Classifier | 0.935 | 0.855 | 0.979 |
bp <- barPlotCiError(as.matrix(cp$aucTable),metricname="ROC AUC",thesets=thesets,themethod=theMethod,main="ROC AUC",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"))
pander::pander(bp$barMatrix,caption = "ROC AUC",round = 3)
| Default Classifier | Filtered SVM Classifier | |
|---|---|---|
| B:SWiMS | 1 | 0.983 |
| LASSO | 1 | 1 |
| RF | 0.75 | 0.982 |
| SVM | 0.967 | 1 |
pander::pander(bp$ciTable,caption = "ROC AUC with 95%CI",round = 3)
| ROC AUC | lower | upper | |
|---|---|---|---|
| Default Classifier | 1 | 0.887 | 1 |
| Default Classifier | 1 | 0.94 | 1 |
| Default Classifier | 0.75 | 0.533 | 0.925 |
| Default Classifier | 0.967 | 0.629 | 1 |
| Filtered SVM Classifier | 0.983 | 0.856 | 1 |
| Filtered SVM Classifier | 1 | 0.912 | 1 |
| Filtered SVM Classifier | 0.982 | 0.925 | 1 |
| Filtered SVM Classifier | 1 | 0.925 | 1 |
pander::pander(summary(LYMPFRESA$BSWiMS.model,caption="Sonar",round = 3))
coefficients:
| Estimate | lower | OR | upper | u.Accuracy | |
|---|---|---|---|---|---|
| D55716_at | 0.0002825 | 1 | 1 | 1 | 0.879 |
| X02152_at | 2.408e-05 | 1 | 1 | 1 | 0.8977 |
| M63835_at | 0.0007412 | 1 | 1.001 | 1.001 | 0.88 |
| HG4074.HT4344_at | 0.0002791 | 1 | 1 | 1 | 0.8796 |
| U14518_at | 0.1101 | 0.5044 | 1.116 | 2.471 | 0.8494 |
| HG1980.HT2023_at | 0.0002622 | 1 | 1 | 1 | 0.8612 |
| D78134_at | -0.0004003 | 0.9994 | 0.9996 | 0.9998 | 0.8011 |
| M57710_at | 0.0001525 | 1 | 1 | 1 | 0.8477 |
| M94880_f_at | -0.0001467 | 0.9997 | 0.9999 | 1 | 0.7116 |
| J03909_at | 4.365e-05 | 1 | 1 | 1 | 0.8657 |
| D87119_at | -0.002077 | 0.9825 | 0.9979 | 1.014 | 0.7739 |
| X56494_at | 9.893e-05 | 1 | 1 | 1 | 0.8263 |
| M63138_at | 0.0002606 | 0.9999 | 1 | 1.001 | 0.8493 |
| Z21966_at | -0.069 | 0.558 | 0.9333 | 1.561 | 0.852 |
| D82348_at | 0.0003157 | 1 | 1 | 1 | 0.85 |
| D83597_at | -0.0002522 | 0.9996 | 0.9997 | 0.9999 | 0.704 |
| L25876_at | 0.000868 | 1 | 1.001 | 1.002 | 0.8073 |
| U28386_at | 0.07762 | 0.7788 | 1.081 | 1.5 | 0.8208 |
| X01060_at | 0.0002599 | 1 | 1 | 1 | 0.8458 |
| Z35227_at | -0.0002598 | 0.9996 | 0.9997 | 0.9999 | 0.7248 |
| M14328_s_at | 1.806e-05 | 1 | 1 | 1 | 0.823 |
| X16983_at | -0.002114 | 0.9973 | 0.9979 | 0.9985 | 0.783 |
| X17620_at | 0.0001613 | 1 | 1 | 1 | 0.8376 |
| HG4258.HT4528_at | -0.0002077 | 0.9997 | 0.9998 | 0.9999 | 0.7543 |
| D79997_at | 0.008345 | 0.9401 | 1.008 | 1.082 | 0.8635 |
| X62078_at | 9.35e-05 | 1 | 1 | 1 | 0.82 |
| M60830_at | -0.1486 | 0.8352 | 0.8619 | 0.8895 | 0.5905 |
| V00594_s_at | 2.346e-06 | 1 | 1 | 1 | 0.8491 |
| M95623_cds1_at | 0.000193 | 1 | 1 | 1 | 0.7404 |
| L33842_rna1_at | 0.0001316 | 1 | 1 | 1 | 0.8259 |
| Y00062_at | -3.507e-05 | 1 | 1 | 1 | 0.6509 |
| X69433_at | 4.803e-05 | 1 | 1 | 1 | 0.8003 |
| M13792_at | 0.0001334 | 1 | 1 | 1 | 0.8509 |
| U81375_at | 0.0004471 | 1 | 1 | 1.001 | 0.8438 |
| HG417.HT417_s_at | 5.237e-05 | 1 | 1 | 1 | 0.792 |
| D13633_at | 0.000176 | 1 | 1 | 1 | 0.8276 |
| X16396_at | 9.416e-05 | 1 | 1 | 1 | 0.819 |
| L17131_rna1_at | 1.546e-05 | 1 | 1 | 1 | 0.814 |
| U46006_s_at | -0.0006755 | 0.9991 | 0.9993 | 0.9995 | 0.8008 |
| L42324_at | -3.584e-05 | 1 | 1 | 1 | 0.7399 |
| r.Accuracy | full.Accuracy | u.AUC | r.AUC | full.AUC | |
|---|---|---|---|---|---|
| D55716_at | 0.5 | 0.879 | 0.879 | 0.5 | 0.879 |
| X02152_at | 0.5 | 0.8977 | 0.8977 | 0.5 | 0.8977 |
| M63835_at | 0.5194 | 0.8894 | 0.88 | 0.5194 | 0.8894 |
| HG4074.HT4344_at | 0.5 | 0.8796 | 0.8796 | 0.5 | 0.8796 |
| U14518_at | 0.6411 | 0.8928 | 0.8494 | 0.6411 | 0.8928 |
| HG1980.HT2023_at | 0.7313 | 0.9379 | 0.8612 | 0.7313 | 0.9379 |
| D78134_at | 0.8464 | 0.9629 | 0.8011 | 0.8464 | 0.9629 |
| M57710_at | 0.5843 | 0.8901 | 0.8477 | 0.5843 | 0.8901 |
| M94880_f_at | 0.8467 | 0.9634 | 0.7116 | 0.8467 | 0.9634 |
| J03909_at | 0.569 | 0.879 | 0.8657 | 0.569 | 0.879 |
| D87119_at | 0.8348 | 0.9704 | 0.7739 | 0.8348 | 0.9704 |
| X56494_at | 0.6091 | 0.881 | 0.8263 | 0.6091 | 0.881 |
| M63138_at | 0.675 | 0.9325 | 0.8493 | 0.675 | 0.9325 |
| Z21966_at | 0.8181 | 0.9343 | 0.852 | 0.8181 | 0.9343 |
| D82348_at | 0.6568 | 0.9158 | 0.85 | 0.6568 | 0.9158 |
| D83597_at | 0.8465 | 0.9368 | 0.704 | 0.8465 | 0.9368 |
| L25876_at | 0.7998 | 0.9456 | 0.8073 | 0.7998 | 0.9456 |
| U28386_at | 0.6085 | 0.8966 | 0.8208 | 0.6085 | 0.8966 |
| X01060_at | 0.5622 | 0.873 | 0.8458 | 0.5622 | 0.873 |
| Z35227_at | 0.8017 | 0.9321 | 0.7248 | 0.8017 | 0.9321 |
| M14328_s_at | 0.5 | 0.823 | 0.823 | 0.5 | 0.823 |
| X16983_at | 0.819 | 0.9479 | 0.783 | 0.819 | 0.9479 |
| X17620_at | 0.6072 | 0.8769 | 0.8376 | 0.6072 | 0.8769 |
| HG4258.HT4528_at | 0.8463 | 0.9569 | 0.7543 | 0.8463 | 0.9569 |
| D79997_at | 0.5645 | 0.8841 | 0.8635 | 0.5645 | 0.8841 |
| X62078_at | 0.5999 | 0.8671 | 0.82 | 0.5999 | 0.8671 |
| M60830_at | 0.8161 | 1 | 0.5905 | 0.8161 | 1 |
| V00594_s_at | 0.8218 | 0.9655 | 0.8491 | 0.8218 | 0.9655 |
| M95623_cds1_at | 0.8573 | 0.9272 | 0.7404 | 0.8573 | 0.9272 |
| L33842_rna1_at | 0.8364 | 0.9203 | 0.8259 | 0.8364 | 0.9203 |
| Y00062_at | 0.8032 | 0.9425 | 0.6509 | 0.8032 | 0.9425 |
| X69433_at | 0.5388 | 0.8283 | 0.8003 | 0.5388 | 0.8283 |
| M13792_at | 0.6186 | 0.8871 | 0.8509 | 0.6186 | 0.8871 |
| U81375_at | 0.8124 | 0.9303 | 0.8438 | 0.8124 | 0.9303 |
| HG417.HT417_s_at | 0.7166 | 0.9025 | 0.792 | 0.7166 | 0.9025 |
| D13633_at | 0.8003 | 0.9511 | 0.8276 | 0.8003 | 0.9511 |
| X16396_at | 0.7256 | 0.9289 | 0.819 | 0.7256 | 0.9289 |
| L17131_rna1_at | 0.5 | 0.814 | 0.814 | 0.5 | 0.814 |
| U46006_s_at | 0.8276 | 0.9741 | 0.8008 | 0.8276 | 0.9741 |
| L42324_at | 0.8391 | 0.9253 | 0.7399 | 0.8391 | 0.9253 |
| IDI | NRI | z.IDI | z.NRI | |
|---|---|---|---|---|
| D55716_at | 0.7153 | 1.516 | 16.69 | 12.87 |
| X02152_at | 0.6401 | 1.591 | 14.5 | 14.53 |
| M63835_at | 0.6293 | 1.554 | 14.2 | 14.55 |
| HG4074.HT4344_at | 0.6428 | 1.518 | 14.45 | 13.21 |
| U14518_at | 0.5395 | 1.552 | 11.73 | Inf |
| HG1980.HT2023_at | 0.6071 | 1.745 | 13.79 | 22.76 |
| D78134_at | 0.3228 | 1.824 | 7.254 | 27.14 |
| M57710_at | 0.5461 | 1.509 | 11.79 | 13.58 |
| M94880_f_at | 0.2996 | 1.746 | 7.134 | 22.15 |
| J03909_at | 0.5061 | 1.499 | 11.19 | 12.6 |
| D87119_at | 0.2895 | 1.523 | 6.916 | 2.996e+306 |
| X56494_at | 0.5577 | 1.494 | 12.33 | 15.72 |
| M63138_at | 0.5006 | 1.617 | 11.29 | 21.87 |
| Z21966_at | 0.3003 | 1.641 | 7.023 | Inf |
| D82348_at | 0.5465 | 1.572 | 12.18 | 16.14 |
| D83597_at | 0.2612 | 1.555 | 6.265 | 14.16 |
| L25876_at | 0.3769 | 1.529 | 8.811 | 15.13 |
| U28386_at | 0.6119 | 1.586 | 14.79 | Inf |
| X01060_at | 0.5578 | 1.464 | 12.17 | 12.76 |
| Z35227_at | 0.2835 | 1.436 | 6.737 | 12.62 |
| M14328_s_at | 0.5734 | 1.292 | 12.39 | 9.188 |
| X16983_at | 0.275 | 1.443 | 6.748 | 11.86 |
| X17620_at | 0.5229 | 1.472 | 11.49 | 12.59 |
| HG4258.HT4528_at | 0.2529 | 1.523 | 6.783 | 12.85 |
| D79997_at | 0.5369 | 1.505 | 11.67 | 1.498e+306 |
| X62078_at | 0.5099 | 1.394 | 10.98 | 11 |
| M60830_at | 0.4293 | 2 | 9.242 | Inf |
| V00594_s_at | 0.3045 | 1.546 | 7.288 | 13.59 |
| M95623_cds1_at | 0.2293 | 1.421 | 5.822 | 11.32 |
| L33842_rna1_at | 0.2876 | 1.458 | 6.983 | 12.25 |
| Y00062_at | 0.2926 | 1.471 | 6.819 | 13.27 |
| X69433_at | 0.5137 | 1.356 | 11.08 | 12.09 |
| M13792_at | 0.4443 | 1.476 | 9.91 | 12.53 |
| U81375_at | 0.2559 | 1.556 | 6.36 | 13.84 |
| HG417.HT417_s_at | 0.4275 | 1.416 | 9.415 | 12.39 |
| D13633_at | 0.3906 | 1.494 | 8.829 | 12.64 |
| X16396_at | 0.4985 | 1.575 | 11.48 | 15.6 |
| L17131_rna1_at | 0.5439 | 1.256 | 11.6 | 8.839 |
| U46006_s_at | 0.3031 | 1.697 | 7.432 | 17.63 |
| L42324_at | 0.2291 | 1.46 | 6.319 | 16.24 |
bootstrap:
gain <- length(LYMPFRESA$BSWiMS.models$formula.list)/20
gplots::heatmap.2(gain*LYMPFRESA$BSWiMS.models$bagging$formulaNetwork[1:30,1:30],trace="none",mar=c(10,10),main="B:SWiMS Formula Network")