現有一金融業客戶流失資料,資料如下:
library(readr)
churn <- read_csv("https://raw.githubusercontent.com/ywchiu/rcathaybk/master/data/Churn_Modelling.csv")
## Parsed with column specification:
## cols(
## RowNumber = col_integer(),
## CustomerId = col_integer(),
## Surname = col_character(),
## CreditScore = col_integer(),
## Geography = col_character(),
## Gender = col_character(),
## Age = col_integer(),
## Tenure = col_integer(),
## Balance = col_double(),
## NumOfProducts = col_integer(),
## HasCrCard = col_integer(),
## IsActiveMember = col_integer(),
## EstimatedSalary = col_double(),
## Exited = col_integer()
## )
head(churn)
## # A tibble: 6 x 14
## RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure
## <int> <int> <chr> <int> <chr> <chr> <int> <int>
## 1 1 15634602 Hargrave 619 France Female 42 2
## 2 2 15647311 Hill 608 Spain Female 41 1
## 3 3 15619304 Onio 502 France Female 42 8
## 4 4 15701354 Boni 699 France Female 39 1
## 5 5 15737888 Mitchell 850 Spain Female 43 2
## 6 6 15574012 Chu 645 Spain Male 44 8
## # ... with 6 more variables: Balance <dbl>, NumOfProducts <int>,
## # HasCrCard <int>, IsActiveMember <int>, EstimatedSalary <dbl>,
## # Exited <int>
請試用R 語言回答以下問題: