EX02
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
# median minimizes sum of absolute deviation
cal_median <- function(x) {
n <- length(x)
newx <- sort(x)
if(n/2==0)
(newx[n/2]+newx[n/+1])/2
else
newx[(n%/%2)+1]
}
# test it
cal_median(women$height)
## [1] 65
EX03
riffle <- function(x, y) {
dl <- length(x) - length(y)
y[(length(y)+1):(length(y)+dl)] <- rep(NA, dl)
c(na.omit(as.numeric(t(cbind(x,y)))))
}
# test it
riffle(1:10, 50:55)
## [1] 1 50 2 51 3 52 4 53 5 54 6 55 7 8 9 10
EX04
nameCombo <- function( x ) {
n <-length(x)
ll <- as.list(x)
for(i in 2:length(x)) {
indices <- combn(1:n, i) #給出所有可能組合(排列組合)
for(j in 1:dim(indices)[2]) {
new_ll <- list(x[indices[, j]])
ll <- c(ll, new_ll)
}
}
return(ll)
}
# test it
nameCombo(c("V1", "V2", "V3"))
## [[1]]
## [1] "V1"
##
## [[2]]
## [1] "V2"
##
## [[3]]
## [1] "V3"
##
## [[4]]
## [1] "V1" "V2"
##
## [[5]]
## [1] "V1" "V3"
##
## [[6]]
## [1] "V2" "V3"
##
## [[7]]
## [1] "V1" "V2" "V3"
nameCombo_new <- function(x) {
ll <- list()
for(i in 1:length(x)){
b1 <- apply(combn(x,i), 2, list)
new_ll <- lapply(b1,unlist)
ll <- c(ll,new_ll)
}
return(ll)
}
#test it
nameCombo_new(c("V1", "V2", "V3"))
## [[1]]
## [1] "V1"
##
## [[2]]
## [1] "V2"
##
## [[3]]
## [1] "V3"
##
## [[4]]
## [1] "V1" "V2"
##
## [[5]]
## [1] "V1" "V3"
##
## [[6]]
## [1] "V2" "V3"
##
## [[7]]
## [1] "V1" "V2" "V3"
EX05
plot.new()
plot.window(xlim = c(0, 6), ylim = c(0, 6), asp = 1)
my_cl <- c("indianred", "orange", "yellow", "forestgreen", "dodgerblue",
"violet", "purple")
m <- matrix(1:7, nrow = 6, ncol = 6)
## Warning in matrix(1:7, nrow = 6, ncol = 6): 資料長度 [7] 並非列數量 [6] 的
## 因數或倍數
for(i in 1:6) {
for(j in 1:6){
cm <- m[i, j]
rect(i-1, j-1, i, j, col = my_cl[cm])
}
}

EX06
set.seed(0423)
coin <- sample(c("H", "T"), 100, replace = TRUE)
coin.rle <- rle(coin)
plot(prop.table(table(coin.rle$lengths)),
xlab = "run length",
ylab = "probability")

EX07
library(data.table)
##
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
## between, first, last
library(tidyverse)
## -- Attaching packages ------------------------------------------------ tidyverse 1.2.1 --
## √ ggplot2 2.2.1 √ readr 1.1.1
## √ tibble 1.4.2 √ purrr 0.2.4
## √ tidyr 0.8.0 √ stringr 1.3.0
## √ ggplot2 2.2.1 √ forcats 0.3.0
## -- Conflicts --------------------------------------------------- tidyverse_conflicts() --
## x data.table::between() masks dplyr::between()
## x dplyr::filter() masks stats::filter()
## x data.table::first() masks dplyr::first()
## x dplyr::lag() masks stats::lag()
## x data.table::last() masks dplyr::last()
## x purrr::transpose() masks data.table::transpose()
library(knitr)
#
dta1 <- fread("plasma.txt", fill = TRUE)[, 1:7]
#
names(dta1) <- c(paste("week", c(1, 2, 6, 10, 14, 15, 16), sep = "."))
#
dta11 <- dta1 %>%
mutate(patient = rep(paste0("S", 101:112), each = 5),
variable = rep(c("plasma_ascorbic_acid",
"whole_blood_ascorbic_acid",
"grip_strength",
"reaction_time",
"folate_red_cell"), 12)) %>%
gather("week", value, 1:7) %>%
separate(week, c("pre", "week"))
#
dta2 <- fread("plasma.txt", fill = TRUE)[, 8:14] %>%
na.omit
#
names(dta2) <- c(paste("week", c(1, 2, 6, 10, 14, 15, 16), sep = "."))
#
dta22 <- dta2 %>%
mutate(patient = rep(paste0("S", 101:112), each = 4),
variable = rep(c("leucocyte_ascorbic_acid",
"thiamin_status",
"red_cell_transketolase",
"folate_serum"), 12)) %>%
gather("week", value, 1:7) %>%
separate(week, c("pre", "week"))
#
dta7 <- read.csv("plasma.csv", header = TRUE)
new.dta <- rbind(dta11, dta22) %>%
spread(variable, value) %>%
select(names(dta7)) %>%
mutate_at(vars(names(dta7)), funs(ifelse(. == -9, NA, .))) %>%
mutate(week = factor(week, level = c(1, 2, 6, 10, 14, 15, 16))) %>%
arrange(patient, week)
kable(head(new.dta, 10))
S101 |
1 |
22 |
46 |
76 |
35 |
6 |
984 |
38 |
104 |
NA |
S101 |
2 |
0 |
16 |
27 |
28 |
4 |
1595 |
29 |
67 |
NA |
S101 |
6 |
103 |
37 |
114 |
0 |
5 |
1984 |
39 |
24 |
375 |
S101 |
10 |
67 |
45 |
100 |
0 |
5 |
1098 |
110 |
66 |
536 |
S101 |
14 |
75 |
29 |
112 |
11 |
4 |
1727 |
59 |
50 |
542 |
S101 |
15 |
65 |
35 |
96 |
0 |
2 |
1300 |
66 |
91 |
260 |
S101 |
16 |
59 |
36 |
81 |
36 |
4 |
1224 |
54 |
48 |
440 |
S102 |
1 |
18 |
34 |
47 |
48 |
14 |
1029 |
NA |
75 |
NA |
S102 |
2 |
0 |
13 |
41 |
32 |
11 |
1562 |
NA |
61 |
NA |
S102 |
6 |
96 |
39 |
103 |
0 |
18 |
1380 |
70 |
59 |
232 |