Importing the data from excel:

> library(readxl) # read_excel
> students_responses <- read_excel("Joseph's data.xlsx", na = "-")

Cleaning the data a bit:

> tmp <- students_responses$AvgTime # variable extraction
> tmp <- gsub("½", "0.5", tmp) # replacing "½" by "0.5"
> tmp <- as.numeric(tmp) # converting to numeric
> students_responses$AvgTime <- tmp # overwritting original variable

Splitting the data into 2 data frame, one for the quantitative data and the other one for the qualitative data:

> types_of_variables <- sapply(students_responses, class) 
> quantitative <- students_responses[, types_of_variables == "numeric"]
> qualitative <- students_responses[, types_of_variables == "character"]

Calculating the data means of the quantitative variables:

> means <- sapply(quantitative, mean, na.rm = TRUE)

Calculating the kurtosis and the skewness of the quantitative variables (using 2 functions from the e1071 package):

> library(e1071) # skewness, kurtosis
> skewnesses <- sapply(quantitative, skewness, na.rm = TRUE)
> kurtosises <- sapply(quantitative, kurtosis, na.rm = TRUE)
> quantiles <- sapply(quantitative, quantile, na.rm = TRUE)

Putting means, skewness and kurtosis together in a data frame:

> quantitive1 <- data.frame(means, skewnesses, kurtosises, t(quantiles))
> quantitive1
           means  skewnesses  kurtosises X0. X25. X50. X75. X100.
Year    1.681208  0.96978614 -0.33320170   1    1    1 2.00     4
AvgTime 5.690559  3.18842597 10.89608942   0    2    3 6.00    48
I1      4.976744 -0.36164441 -0.17348745   1    4    5 6.00     7
I2      4.847176 -0.28864339 -0.06265987   1    4    5 6.00     7
I3      4.973422 -0.50683602  0.43532858   1    4    5 6.00     7
I4      5.210000 -0.71792710  0.35983470   1    4    5 6.00     7
I5      5.345515 -0.53757636  0.04973338   1    5    5 6.00     7
I6      4.770764 -0.38450172 -0.52098805   1    4    5 6.00     7
I7      5.872483 -1.26227012  1.34462867   1    5    6 7.00     7
I8      5.259136 -0.68224456  0.04371037   1    4    5 6.00     7
I9      4.847176 -0.52634190 -0.07832582   1    4    5 6.00     7
I10     4.846667 -0.60079051  0.48385382   1    4    5 6.00     7
I11     4.726667 -0.49074393 -0.46426718   1    4    5 6.00     7
I12     4.707641 -0.32299619 -0.23977746   1    4    5 6.00     7
I13     4.813333 -0.19751458 -0.09980453   1    4    5 6.00     7
I14     5.176667 -0.57790801 -0.11544186   1    4    5 6.00     7
I15     5.425249 -0.68374131 -0.02024136   2    5    6 6.00     7
I16     5.563333 -0.62839401  0.08537050   2    5    6 6.00     7
I17     5.634228 -0.58269013  0.10740522   2    5    6 6.00     7
I18     5.333333 -0.41210605  0.09429238   1    5    5 6.00     7
I19     5.013333 -0.27125439 -0.09803660   1    4    5 6.00     7
I20     4.763333 -0.32963708 -0.17886051   1    4    5 6.00     7
I21     3.920000 -0.01275629  0.08439781   1    3    4 5.00     7
I22     5.281879 -0.59957311 -0.13553117   1    4    5 6.00     7
I23     5.413333 -0.65109186 -0.08193884   1    4    6 7.00     7
I24     5.404682 -0.75830989 -0.11289154   1    4    6 7.00     7
I25     5.277592 -0.59095496 -0.38900395   1    4    6 6.00     7
I26     5.026667 -0.49210851 -0.01024070   1    4    5 6.00     7
I27     5.120401 -0.57608012  0.42582097   1    4    5 6.00     7
I28     4.833333 -0.26627700 -0.18894783   1    4    5 6.00     7
I29     4.802013 -0.33551854 -0.12786827   1    4    5 6.00     7
I30     5.426174 -0.48167715 -0.40229010   1    4    6 7.00     7
I31     5.244147 -0.64109785 -0.20020897   1    4    5 6.00     7
I32     5.873333 -1.04873782  0.60822308   2    5    6 7.00     7
I33     5.396667 -0.71494051 -0.02705782   1    4    6 7.00     7
I34     3.073333  0.41788843 -0.83920906   1    1    3 4.00     7
I35     3.520000  0.09068249 -1.08569796   1    2    4 5.00     7
I36     4.350000 -0.36886567  0.03802961   1    4    4 5.00     7
I37     3.943522 -0.22992107 -0.42823698   1    3    4 5.00     7
I38     4.573826 -0.48504106 -0.62510470   1    4    5 6.00     7
I39     5.270000 -0.63708001 -0.13584738   1    4    5 6.25     7
I40     5.411960 -0.72719640  0.38905595   1    5    6 6.00     7
I41     5.318937 -0.64183177  0.05268921   1    4    5 6.00     7
I42     4.826667 -0.23092563 -0.13574537   1    4    5 6.00     7
I43     5.106312 -0.47921878 -0.25065674   1    4    5 6.00     7
I44     5.245847 -0.54063337 -0.03021753   1    4    5 6.00     7
I45     5.243333 -0.46622434 -0.16352771   1    4    5 6.00     7
I46     5.026667 -0.39673825  0.04532440   1    4    5 6.00     7
I47     5.316667 -0.81279646  0.52362442   1    5    6 6.00     7
I48     5.183333 -0.73667899  0.57139251   1    4    5 6.00     7
I49     5.468439 -0.59362802  0.02292082   1    5    6 6.00     7
I50     5.421927 -0.58632933  0.42921198   1    5    5 6.00     7
I51     5.780731 -0.79403322 -0.10647142   2    5    6 7.00     7

Cleaning a bit the environment:

> rm(tmp, types_of_variables)
> ls()
[1] "kurtosises"         "means"              "qualitative"       
[4] "quantiles"          "quantitative"       "quantitive1"       
[7] "skewnesses"         "students_responses"