Resultado da avaliação de Probabilidade e Estatística - Engenharia 2A e 2B - AEDB
1º Bimestre
library(readr)
notas <- read_delim("notas.CSV",
";", escape_double = FALSE, col_types = cols(notas = col_number()),
trim_ws = TRUE)
notas$notas <-notas$notas/10
library(psych)
table(notas)
turma
notas ENG_2A ENG_2B
4.7 1 0
5.5 1 0
5.6 2 0
5.7 8 0
5.9 1 0
6.2 0 2
6.4 0 1
6.6 0 1
6.8 1 1
6.9 4 1
7 2 1
7.1 2 4
7.2 0 1
7.4 1 0
7.5 0 1
7.6 0 2
7.7 2 4
7.8 0 2
7.9 0 1
8 1 3
8.3 1 0
8.4 0 1
8.5 0 5
8.6 0 2
8.7 0 1
8.8 1 4
8.9 2 8
9 1 8
9.2 1 1
9.3 3 2
9.4 1 0
9.5 5 0
library("graphics")
### Mosaic plot of observed values
mosaicplot(table(notas), las=2, col="steelblue",
main = "Tabulação das notas")

summary(notas$notas)
Min. 1st Qu. Median Mean 3rd Qu. Max.
4.700 7.000 8.000 7.856 8.900 9.500
describeBy(notas$notas)
no grouping variable requested
vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 98 7.86 1.25 8 7.94 1.41 4.7 9.5 4.8 -0.54 -0.87 0.13
describeBy(notas$notas,notas$turma)
Descriptive statistics by group
group: ENG_2A
vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 41 7.42 1.54 7.1 7.42 2.08 4.7 9.5 4.8 0.05 -1.52 0.24
-----------------------------------------------------------------
group: ENG_2B
vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 57 8.17 0.87 8.5 8.25 0.74 6.2 9.3 3.1 -0.66 -0.79 0.12







LS0tDQp0aXRsZTogIlByb2JhYmlsaWRhZGUgZSBFc3RhdMOtc3RpY2EgLSBFbmdlbmhhcmlhIDLCuiBhbm8gLSAyMDE4IC0gQUVEQiINCmF1dGhvcjogIlByb2YgRHIuIFJvYmVydG8gQ2FtcG9zIExlb25pIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KIyMjIFJlc3VsdGFkbyBkYSBhdmFsaWHDp8OjbyBkZSBQcm9iYWJpbGlkYWRlIGUgRXN0YXTDrXN0aWNhIC0gRW5nZW5oYXJpYSAyQSBlIDJCIC0gQUVEQg0KIyMjIDHCuiBCaW1lc3RyZQ0KDQoqKioNCmBgYHtyfQ0KbGlicmFyeShyZWFkcikNCm5vdGFzIDwtIHJlYWRfZGVsaW0oIm5vdGFzLkNTViIsIA0KICAgICI7IiwgZXNjYXBlX2RvdWJsZSA9IEZBTFNFLCBjb2xfdHlwZXMgPSBjb2xzKG5vdGFzID0gY29sX251bWJlcigpKSwgDQogICAgdHJpbV93cyA9IFRSVUUpDQoNCm5vdGFzJG5vdGFzIDwtbm90YXMkbm90YXMvMTANCmBgYA0KDQpgYGB7cn0NCmxpYnJhcnkocHN5Y2gpDQp0YWJsZShub3RhcykNCg0KbGlicmFyeSgiZ3JhcGhpY3MiKQ0KIyMjIE1vc2FpYyBwbG90IG9mIG9ic2VydmVkIHZhbHVlcw0KbW9zYWljcGxvdCh0YWJsZShub3RhcyksICBsYXM9MiwgY29sPSJzdGVlbGJsdWUiLA0KICAgICAgICAgICBtYWluID0gIlRhYnVsYcOnw6NvIGRhcyBub3RhcyIpDQoNCmBgYA0KDQoNCmBgYHtyfQ0Kc3VtbWFyeShub3RhcyRub3RhcykNCmBgYA0KDQpgYGB7cn0NCmRlc2NyaWJlQnkobm90YXMkbm90YXMpDQoNCmRlc2NyaWJlQnkobm90YXMkbm90YXMsbm90YXMkdHVybWEpDQpgYGANCg0KDQoNCmBgYHtyIGVjaG89RkFMU0V9DQpsaWJyYXJ5KGdncGxvdDIpDQphIDwtIGdncGxvdChub3RhcywgYWVzKHggPSBub3RhcykpDQoNCiNoaXN0b2dyYW0gRW5nDQojIFBvc2l0aW9uIGFkanVzdG1lbnQ6ICJpZGVudGl0eSIgKG92ZXJsYWlkKQ0KYSArIGdlb21faGlzdG9ncmFtKGJyZWFrcz1zZXEoMCwxMCwxKSxhZXMoY29sb3IgPSB0dXJtYSksIGZpbGwgPSAid2hpdGUiLCBhbHBoYSA9IDAuNCxwb3NpdGlvbj0iaWRlbnRpdHkiLCBjbG9zZWQgPSBjKCJsZWZ0IikpKw0KICBzY2FsZV94X2NvbnRpbnVvdXMobGltaXRzID0gYygwLDEwKSwgYnJlYWtzPXNlcSgwLDEwLDEpKSsNCiAgdGhlbWVfbWluaW1hbCgpKw0KICB4bGFiKCJOb3RhcyIpKw0KICB5bGFiKCJGcmVxdcOqbmNpYSIpKw0KICBnZ3RpdGxlKCJIaXN0b2dyYW1hIHR1cm1hcyBFbmcgMkEgZSAyQiIpDQogIA0KDQojaGlzdG9ncmFtIEVuZw0KIyBQb3NpdGlvbiBhZGp1c3RtZW50OiAiZmFjZXQiIg0KYSArIGdlb21faGlzdG9ncmFtKGJyZWFrcz1zZXEoMCwxMCwxKSxhZXMoY29sb3IgPSB0dXJtYSksIGZpbGwgPSAid2hpdGUiLCBhbHBoYSA9IDAuNCxwb3NpdGlvbj0iaWRlbnRpdHkiLCBjbG9zZWQgPSBjKCJsZWZ0IikpKw0KICBzY2FsZV94X2NvbnRpbnVvdXMobGltaXRzID0gYygwLDEwKSwgYnJlYWtzPXNlcSgwLDEwLDEpKSsNCiAgdGhlbWVfbWluaW1hbCgpKw0KICB4bGFiKCJOb3RhcyIpKw0KICB5bGFiKCJGcmVxdcOqbmNpYSIpKw0KICBnZ3RpdGxlKCJIaXN0b2dyYW1hIHR1cm1hcyBFbmcgMkEgZSAyQiIpKw0KICBmYWNldF93cmFwKCB+IHR1cm1hKQ0KDQojaGlzdG9ncmFtIEVuZw0KcGxvdCA8LSBnZ3Bsb3QoZGF0YT1ub3RhcywgYWVzKHg9bm90YXMpKSArIGdlb21faGlzdG9ncmFtKGJyZWFrcz1zZXEoMCwxMCwxKSxmaWxsPSJyb3lhbGJsdWUiLCBjb2xvdXI9ImJsYWNrIiwgYWxwaGE9LjQsIGNsb3NlZCA9IGMoImxlZnQiKSkNCg0KcGxvdCA8LSBwbG90ICsgeGxhYigiTm90YXMiKSsNCiAgeWxhYigiRnJlcXXDqm5jaWEiKSsNCiAgZ2d0aXRsZSgiSGlzdG9ncmFtYSB0dXJtYXMgRW5nIDJBIGUgMkIiKSsNCiAgdGhlbWUocGxvdC50aXRsZT1lbGVtZW50X3RleHQoc2l6ZT1yZWwoMSksIGxpbmVoZWlnaHQ9LjksZmFjZT0iYm9sZC5pdGFsaWMiLCBjb2xvdXI9ImJsYWNrIikpKw0KICB0aGVtZShheGlzLnRpdGxlPWVsZW1lbnRfdGV4dChzaXplPTEyLCBsaW5laGVpZ2h0PS45LCBmYWNlPSJib2xkIiwgY29sb3VyPSJibGFjayIpKSsNCiAgc3RhdF9iaW4oYmlucz0xMCwgYmlud2lkdGggPSAxLGJyZWFrcz1zZXEoMCwxMCwxKSwgZ2VvbT0idGV4dCIsIGFlcyhsYWJlbD0uLmNvdW50Li4pLCB2anVzdD0tMSwgY2xvc2VkID0gYygibGVmdCIpKSsgc2NhbGVfeF9jb250aW51b3VzKGxpbWl0cyA9IGMoMCwxMCksIGJyZWFrcz1zZXEoMCwxMCwxKSkrDQogIHNjYWxlX3lfY29udGludW91cyhleHBhbmQgPSBjKDAsMCksbGltaXRzID0gYygwLG1heChnZ3Bsb3RfYnVpbGQocGxvdCkkZGF0YVtbMV1dJGNvdW50KSoxLjEpLCAgYnJlYWtzPXNlcSgwLG1heChnZ3Bsb3RfYnVpbGQocGxvdCkkZGF0YVtbMV1dJGNvdW50KSoxLjEsMTApKSANCnBsb3QNCg0KDQoNCmEgKyBnZW9tX2RvdHBsb3QoYWVzKGZpbGwgPSB0dXJtYSksYmlucG9zaXRpb25zID0gImFsbCIpKw0KICB0aGVtZV9taW5pbWFsKCkNCg0KDQojIEJveCBwbG90IHdpdGggbWVhbiBwb2ludHMNCmUgPC0gZ2dwbG90KG5vdGFzLCBhZXMoeCA9IHR1cm1hLCB5ID0gbm90YXMpKQ0KZSArIGdlb21fYm94cGxvdChhZXMoY29sb3IgPSB0dXJtYSxmaWxsID0gdHVybWEpKSArDQogIHN0YXRfc3VtbWFyeShmdW4ueSA9IG1lYW4sIGdlb20gPSAicG9pbnQiLCBzaGFwZSA9ICJYIiwgc2l6ZSA9IDQsIGNvbG9yID0gImJsdWUiKSsNCiAgc2NhbGVfY29sb3JfYnJld2VyKHBhbGV0dGU9IkRhcmsyIikrDQogIHRoZW1lX21pbmltYWwoKSsNCiAgZ2d0aXRsZSgiTm90YXMgZGUgUHJvYmFiaWxpZGFkZSBlIEVzdGF0w61zdGljYSIsIHN1YnRpdGxlID0gIlg6IG3DqWRpYSIpDQoNCiMgQ2hhbmdlIHBvaW50IGNvbG9ycyBieSBkb3NlIChncm91cHMpDQplICsgZ2VvbV9qaXR0ZXIoYWVzKGNvbG9yID0gdHVybWEpLCBwb3NpdGlvbiA9IHBvc2l0aW9uX2ppdHRlcigwLjMpKSArDQp0aGVtZV9taW5pbWFsKCkNCg0KIyBhbGwgb2YgdGhlbQ0KbGlicmFyeShnZ3RoZW1lcykNCmdncGxvdChub3RhcywgYWVzKHg9dHVybWEsIHk9bm90YXMsIGdyb3VwPXR1cm1hKSkgKw0KZ2VvbV9ib3hwbG90KGFlcyhmaWxsPXR1cm1hKSkgKw0KZ2VvbV9qaXR0ZXIoY29sb3VyPSJncmF5NDAiLHdpZHRoPTAuMixhbHBoYT0wLjMpICsNCnN0YXRfc3VtbWFyeShmdW4ueSA9IG1lYW4sIGdlb20gPSAicG9pbnQiLCBzaGFwZSA9ICJYIiwgc2l6ZSA9IDQsIGNvbG9yID0gImJsdWUiKSsNCnRoZW1lX21pbmltYWwoKSsNCmdndGl0bGUoIk5vdGFzIGRlIFByb2JhYmlsaWRhZGUgZSBFc3RhdMOtc3RpY2EiLCBzdWJ0aXRsZSA9ICJYOiBtw6lkaWEiKQ0KYGBgDQo=