rm(list=ls())
zeroes <- rep.int(0,2000)
ones <- rep(1,2000)
p <- sum(ones) / length(c(ones,zeroes))
p
## [1] 0.5
pop <- c(zeroes, ones)
## Take a random sample phat with sample size 50 and calculate a test statistic ##
samp_size <- 75
phat <- sum(sample(pop,samp_size)) / samp_size
## Calculate a test statistic.
#z <- (phat - .5 - .01) / sqrt(.5*.5/samp_size)
#z
### Now do that procedure a bunch of times ###
results <- vector(mode = "numeric", length = 1000)
for (i in 1:1000) {
phat <- sum(sample(pop,samp_size)) / samp_size
z <- (phat - .5)/ sqrt(.5*.5/samp_size)
results[i] <- z
rm(phat)
rm(z)
}
#results
mistakes <-results[results < -1.96 | results > 1.96]
mistakes
## [1] -2.193931 -2.655811 2.193931 2.655811 3.117691 1.962991 2.886751
## [8] 2.655811 2.424871 -1.962991 1.962991 -2.193931 2.424871 1.962991
## [15] -2.193931 2.193931 -2.193931 1.962991 2.193931 1.962991 -2.193931
## [22] -2.193931 -3.348632 -1.962991 -2.193931 -2.655811 -1.962991 -1.962991
## [29] 2.193931 1.962991 -1.962991 -2.193931 2.655811 -2.193931 2.193931
## [36] 1.962991 -1.962991 -1.962991 -1.962991 -1.962991 1.962991 -2.655811
## [43] 2.655811 -2.424871 2.424871 2.193931 1.962991 -2.424871 1.962991
## [50] -2.886751 -1.962991
length(mistakes) / 1000
## [1] 0.051