lesionsSumDiffRed <- NULL
load("RadiomicsBRCA.RDATA")
RA_BRCA_FRESA <- FRESA.Model(formula = Risk ~ 1,data = lesionsSumDiffRed,repeats = 20)
cp <- CVRegBenchmark(theData = lesionsSumDiffRed, theOutcome = "Risk", reps = 200, fraction = 0.90, topincluded = 50 )
elapcol <- names(cp$times[[1]]) == "elapsed"
cputimes <- list(Fresa = mean(cp$times$fresatime[ elapcol ]),LASSO = mean(cp$times$LASSOtime[ elapcol ]),RF = mean(cp$times$RFtime[ elapcol ]),SVM = mean(cp$times$SVMtime[ elapcol ]))
featsize <- list(Fresa = mean(cp$featSize$FRESASize),LASSO = mean(cp$featSize$LASSOSize),Univ = mean(cp$featSize$UNIVSize))
#The Times
pander::pander(cputimes)
pander::pander(featsize)
plotMAEEvolution(cp,30,main="Mean Absolute Error (MAE)", location="topright")
bp <- barPlotCiError(as.matrix(cp$CorTable),metricname="Pearson Correlation",thesets=thesets,themethod=theMethod,main="Pearson Correlation",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"))
pander::pander(bp$barMatrix,caption = "Pearson Correlation",round = 3)
| Default Regresion Method | SVM Rendering Filtered | |
|---|---|---|
| B:SWiMS | 0.49 | 0.548 |
| LASSO | 0.372 | 0.45 |
| RF | 0.219 | 0.31 |
| SVM | 0.055 | 0.528 |
pander::pander(bp$ciTable,caption = "Pearson Correlation with 95%CI",round = 3)
| Pearson Correlation | lower | upper | |
|---|---|---|---|
| Default Regresion Method | 0.49 | 0.29 | 0.649 |
| Default Regresion Method | 0.372 | 0.152 | 0.557 |
| Default Regresion Method | 0.219 | -0.015 | 0.43 |
| Default Regresion Method | 0.055 | -0.181 | 0.284 |
| SVM Rendering Filtered | 0.548 | 0.36 | 0.693 |
| SVM Rendering Filtered | 0.45 | 0.242 | 0.618 |
| SVM Rendering Filtered | 0.31 | 0.083 | 0.507 |
| SVM Rendering Filtered | 0.528 | 0.336 | 0.677 |
bp <- barPlotCiError(as.matrix(cp$RMSETable),metricname="RMSE",thesets=thesets,themethod=theMethod,main="RMSE",offsets = c(0.5,5),args.legend = list(x = "bottomright"))
pander::pander(bp$barMatrix,caption = "RMSE",round = 3)
| Default Regresion Method | SVM Rendering Filtered | |
|---|---|---|
| B:SWiMS | 48.42 | 46.58 |
| LASSO | 51.39 | 49.55 |
| RF | 54.05 | 53.01 |
| SVM | 56.13 | 47.32 |
pander::pander(bp$ciTable,caption = "RMSE with 95%CI",round = 3)
| RMSE | lower | upper | |
|---|---|---|---|
| Default Regresion Method | 48.42 | 41.6 | 57.94 |
| Default Regresion Method | 51.39 | 44.15 | 61.48 |
| Default Regresion Method | 54.05 | 46.44 | 64.68 |
| Default Regresion Method | 56.13 | 48.22 | 67.16 |
| SVM Rendering Filtered | 46.58 | 40.02 | 55.73 |
| SVM Rendering Filtered | 49.55 | 42.57 | 59.28 |
| SVM Rendering Filtered | 53.01 | 45.55 | 63.43 |
| SVM Rendering Filtered | 47.32 | 40.65 | 56.62 |
bp <- barPlotCiError(as.matrix(cp$BiasTable),metricname="BIAS",thesets=thesets,themethod=theMethod,main="BIAS",offsets = c(0.5,0.5),args.legend = list(x = "bottomright"))
pander::pander(bp$barMatrix,caption = "BIAS",round = 3)
| Default Regresion Method | SVM Rendering Filtered | |
|---|---|---|
| B:SWiMS | 1.948 | -0.157 |
| LASSO | 0.945 | 0.237 |
| RF | 0.47 | -1.077 |
| SVM | -1.359 | 1.928 |
pander::pander(bp$ciTable,caption = "BIAS with 95%CI",round = 3)
| BIAS | lower | upper | |
|---|---|---|---|
| Default Regresion Method | 1.948 | -9.504 | 13.4 |
| Default Regresion Method | 0.945 | -11.22 | 13.11 |
| Default Regresion Method | 0.47 | -12.32 | 13.26 |
| Default Regresion Method | -1.359 | -14.64 | 11.92 |
| SVM Rendering Filtered | -0.157 | -11.18 | 10.87 |
| SVM Rendering Filtered | 0.237 | -11.49 | 11.96 |
| SVM Rendering Filtered | -1.077 | -13.62 | 11.47 |
| SVM Rendering Filtered | 1.928 | -9.263 | 13.12 |
pander::pander(summary(RA_BRCA_FRESA$BSWiMS.model,caption="Recurency Risk model",round = 3))
coefficients:
| Estimate | lower | mean | upper | |
|---|---|---|---|---|
| D_CC_LH_3_ICDF_0.99 | -0.4619 | -0.4714 | -0.4619 | -0.4523 |
| S_CC_FRACTAL_ICDF_0.95 | 0.2233 | 0.2196 | 0.2233 | 0.2271 |
| D_CC_HL_4_ICDF_0.999 | -0.05269 | -0.05418 | -0.05269 | -0.0512 |
| D_CC_LH_3_ICDF_0.999 | -0.04899 | -0.05046 | -0.04899 | -0.04753 |
| S_CC_FRACTAL_Mean | 0.02206 | 0.01801 | 0.02206 | 0.02612 |
| S_CC_FRACTAL_ICDF_0.75 | 0.0183 | 0.01525 | 0.0183 | 0.02136 |
| S_CC_LH_2_Mean | -0.2247 | -0.3738 | -0.2247 | -0.07557 |
| S_CC_FRACTAL_ICDF_0.25 | 0.003036 | 0.001275 | 0.003036 | 0.004796 |
| S_CC_FRACTAL_ICDF_0.05 | 0.001385 | 0.0005282 | 0.001385 | 0.002241 |
| S_CC_LH_2_z_Mean | -8.144 | -13.7 | -8.144 | -2.586 |
| u.MSE | r.MSE | model.MSE | NeRI | F.pvalue | |
|---|---|---|---|---|---|
| D_CC_LH_3_ICDF_0.99 | 2443 | 2043 | 1632 | 0.07465 | 6.916e-05 |
| S_CC_FRACTAL_ICDF_0.95 | 2422 | 2162 | 1655 | 0.4225 | 1.363e-05 |
| D_CC_HL_4_ICDF_0.999 | 2750 | 1995 | 1632 | 0.07324 | 0.0001689 |
| D_CC_LH_3_ICDF_0.999 | 2503 | 2495 | 2128 | 0.1393 | 0.0008095 |
| S_CC_FRACTAL_Mean | 2473 | 2685 | 2215 | 0.2254 | 0.0002312 |
| S_CC_FRACTAL_ICDF_0.75 | 2483 | 2729 | 2278 | 0.1744 | 0.0003814 |
| S_CC_LH_2_Mean | 2586 | 2776 | 2400 | 0.1479 | 0.001501 |
| S_CC_FRACTAL_ICDF_0.25 | 2535 | 2965 | 2473 | 0.1925 | 0.0003579 |
| S_CC_FRACTAL_ICDF_0.05 | 2575 | 2873 | 2443 | 0.1362 | 0.000755 |
| S_CC_LH_2_z_Mean | 2629 | 2911 | 2535 | 0.1338 | 0.00194 |
| t.pvalue | Sign.pvalue | Wilcox.pvalue | |
|---|---|---|---|
| D_CC_LH_3_ICDF_0.99 | 0.01884 | 0.3023 | 0.0487 |
| S_CC_FRACTAL_ICDF_0.95 | 0.001452 | 0.0002114 | 0.001148 |
| D_CC_HL_4_ICDF_0.999 | 0.006883 | 0.308 | 0.009542 |
| D_CC_LH_3_ICDF_0.999 | 0.02556 | 0.1338 | 0.04206 |
| S_CC_FRACTAL_Mean | 0.02121 | 0.02836 | 0.01173 |
| S_CC_FRACTAL_ICDF_0.75 | 0.0309 | 0.08703 | 0.01957 |
| S_CC_LH_2_Mean | 0.02613 | 0.1247 | 0.03159 |
| S_CC_FRACTAL_ICDF_0.25 | 0.0239 | 0.06265 | 0.01467 |
| S_CC_FRACTAL_ICDF_0.05 | 0.02807 | 0.134 | 0.05397 |
| S_CC_LH_2_z_Mean | 0.03496 | 0.1559 | 0.05288 |
bootstrap:
gain <- length(RA_BRCA_FRESA$BSWiMS.models$formula.list)/20
gplots::heatmap.2(gain*RA_BRCA_FRESA$BSWiMS.models$bagging$formulaNetwork,trace="none",mar=c(10,10),main="B:SWiMS Formula Network")