library(readr)
TadpoleBL <- NULL
load("TadpoleBL.RDATA")
tadnames <- as.character(t(read_csv("tadnames.csv")[,2]))
TadpoleBL <- TadpoleBL[,tadnames]
TadpoleBL <- TadpoleBL[complete.cases(TadpoleBL),]
sampleTrain <- sample(nrow(TadpoleBL),nrow(TadpoleBL)*0.10)
sampleTadpole <- TadpoleBL[sampleTrain,]
ADAS_Tadpole_FRESA <- FRESA.Model(formula = ADAS13 ~ 1,data = sampleTadpole,repeats = 20)
cp <- CVRegBenchmark(theData = TadpoleBL, theOutcome = "ADAS13", reps = 50, fraction = 0.15, topincluded = 100 )
elapcol <- names(cp$times[[1]]) == "elapsed"
cputimes <- list(Fresa = mean(cp$times$fresatime[ elapcol ]),LASSO = mean(cp$times$LASSOtime[ elapcol ]),RF = mean(cp$times$RFtime[ elapcol ]),SVM = mean(cp$times$SVMtime[ elapcol ]))
featsize <- list(Fresa = mean(cp$featSize$FRESASize),LASSO = mean(cp$featSize$LASSOSize),Univ = mean(cp$featSize$UNIVSize))
#The Times
pander::pander(cputimes)
pander::pander(featsize)
plotMAEEvolution(cp,50,main="Mean Absolute Error (MAE)", location="topright")
bp <- barPlotCiError(as.matrix(cp$CorTable),metricname = "Pearson Correlation",thesets = thesets,themethod = theMethod,main = "Pearson Correlation",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"))
pander::pander(bp$barMatrix,caption = "Pearson Correlation",round = 3)
| Default Regresion Method | SVM Rendering Filtered | |
|---|---|---|
| B:SWiMS | 0.693 | 0.719 |
| LASSO | 0.706 | 0.711 |
| RF | 0.691 | 0.7 |
| SVM | 0.663 | 0.701 |
pander::pander(bp$ciTable,caption = "Pearson Correlation with 95%CI",round = 3)
| Pearson Correlation | lower | upper | |
|---|---|---|---|
| Default Regresion Method | 0.693 | 0.664 | 0.72 |
| Default Regresion Method | 0.706 | 0.678 | 0.732 |
| Default Regresion Method | 0.691 | 0.661 | 0.718 |
| Default Regresion Method | 0.663 | 0.632 | 0.693 |
| SVM Rendering Filtered | 0.719 | 0.692 | 0.744 |
| SVM Rendering Filtered | 0.711 | 0.684 | 0.737 |
| SVM Rendering Filtered | 0.7 | 0.671 | 0.726 |
| SVM Rendering Filtered | 0.701 | 0.673 | 0.728 |
bp <- barPlotCiError(as.matrix(cp$RMSETable),metricname = "RMSE",thesets = thesets,themethod = theMethod,main = "RMSE",offsets = c(0.5,5),args.legend = list(x = "bottomright"))
pander::pander(bp$barMatrix,caption = "RMSE",round = 3)
| Default Regresion Method | SVM Rendering Filtered | |
|---|---|---|
| B:SWiMS | 6.932 | 6.719 |
| LASSO | 6.895 | 6.844 |
| RF | 7.01 | 6.941 |
| SVM | 7.412 | 6.893 |
pander::pander(bp$ciTable,caption = "RMSE with 95%CI",round = 3)
| RMSE | lower | upper | |
|---|---|---|---|
| Default Regresion Method | 6.932 | 6.678 | 7.207 |
| Default Regresion Method | 6.895 | 6.641 | 7.168 |
| Default Regresion Method | 7.01 | 6.752 | 7.288 |
| Default Regresion Method | 7.412 | 7.139 | 7.706 |
| SVM Rendering Filtered | 6.719 | 6.472 | 6.985 |
| SVM Rendering Filtered | 6.844 | 6.592 | 7.115 |
| SVM Rendering Filtered | 6.941 | 6.686 | 7.217 |
| SVM Rendering Filtered | 6.893 | 6.64 | 7.167 |
bp <- barPlotCiError(as.matrix(cp$BiasTable),metricname = "BIAS",thesets = thesets,themethod = theMethod,main = "BIAS",offsets = c(0.5,0.5),args.legend = list(x = "bottomright"))
pander::pander(bp$barMatrix,caption = "BIAS",round = 3)
| Default Regresion Method | SVM Rendering Filtered | |
|---|---|---|
| B:SWiMS | 0.039 | -0.476 |
| LASSO | 0.023 | -0.343 |
| RF | 0.041 | -0.251 |
| SVM | -0.477 | -0.507 |
pander::pander(bp$ciTable,caption = "BIAS with 95%CI",round = 3)
| BIAS | lower | upper | |
|---|---|---|---|
| Default Regresion Method | 0.039 | -0.336 | 0.413 |
| Default Regresion Method | 0.023 | -0.35 | 0.395 |
| Default Regresion Method | 0.041 | -0.338 | 0.42 |
| Default Regresion Method | -0.477 | -0.877 | -0.078 |
| SVM Rendering Filtered | -0.476 | -0.838 | -0.114 |
| SVM Rendering Filtered | -0.343 | -0.712 | 0.026 |
| SVM Rendering Filtered | -0.251 | -0.626 | 0.124 |
| SVM Rendering Filtered | -0.507 | -0.878 | -0.135 |
pander::pander(summary(ADAS_Tadpole_FRESA$BSWiMS.model,caption="Recurency ADAS13 model",round = 3))
coefficients:
| Estimate | lower | mean | upper | u.MSE | |
|---|---|---|---|---|---|
| ST30SMVO | 0.8751 | 0.7031 | 0.8751 | 1.047 | 64.19 |
| APOE4 | 2.128 | 1.852 | 2.128 | 2.403 | 77.25 |
| ST29SMVO | -1.259 | -1.364 | -1.259 | -1.154 | 58.38 |
| ST40CMVO | -0.9031 | -1.023 | -0.9031 | -0.7835 | 66.02 |
| ST83CMCMP | -1.648 | -1.734 | -1.648 | -1.562 | 56.89 |
| MaxCVD | 1.466 | 1.135 | 1.466 | 1.797 | 85.72 |
| ST99CMCMP | -0.7865 | -1.091 | -0.7865 | -0.4817 | 64.1 |
| ST12SMVO | -0.1673 | -0.2456 | -0.1673 | -0.08897 | 63.05 |
| Hippocampus | -0.0002889 | -0.0002958 | -0.0002889 | -0.0002819 | 59.41 |
| ST91CCMP | -1.26 | -1.672 | -1.26 | -0.8478 | 67.32 |
| ST24TMT | -0.5079 | -0.7533 | -0.5079 | -0.2624 | 57.3 |
| ST83CCMP | -0.1274 | -0.1903 | -0.1274 | -0.06457 | 60.87 |
| ST32TMT | -0.3217 | -0.4842 | -0.3217 | -0.1592 | 63.55 |
| ST24CMVO | -0.04734 | -0.06917 | -0.04734 | -0.02552 | 61.72 |
| Entorhinal | -7.148e-05 | -9.623e-05 | -7.148e-05 | -4.673e-05 | 63.13 |
| stdCOMPD | 0.9246 | 0.506 | 0.9246 | 1.343 | 72.44 |
| r.MSE | model.MSE | NeRI | F.pvalue | t.pvalue | |
|---|---|---|---|---|---|
| ST30SMVO | 54.6 | 42.08 | 0.1618 | 5.905e-09 | 0.0002147 |
| APOE4 | 48.72 | 42.08 | 0.1298 | 1.199e-05 | 0.01014 |
| ST29SMVO | 53.33 | 46.15 | 0.1809 | 1.338e-05 | 0.01778 |
| ST40CMVO | 59.07 | 45.59 | 0.1437 | 6.394e-09 | 0.004838 |
| ST83CMCMP | 54.69 | 47.06 | 0.1824 | 9.614e-06 | 0.01493 |
| MaxCVD | 49.06 | 44.83 | 0.05802 | 0.0006201 | 0.1219 |
| ST99CMCMP | 56.79 | 46.16 | 0.1908 | 1.427e-07 | 0.005876 |
| ST12SMVO | 54.98 | 47.2 | 0.1832 | 7.066e-06 | 0.0102 |
| Hippocampus | 56.48 | 50.65 | 0.1897 | 0.0001605 | 0.03474 |
| ST91CCMP | 61.07 | 45.77 | 0.2 | 1.037e-09 | 0.0007465 |
| ST24TMT | 58.68 | 51.2 | 0.1221 | 2.487e-05 | 0.01649 |
| ST83CCMP | 60.85 | 53.18 | 0.1959 | 3.088e-05 | 0.006942 |
| ST32TMT | 61.63 | 54.31 | 0.0687 | 4.969e-05 | 0.05799 |
| ST24CMVO | 65.06 | 56.06 | 0.2519 | 1.052e-05 | 0.000875 |
| Entorhinal | 77.64 | 58.62 | 0.2595 | 3.658e-09 | 5.535e-05 |
| stdCOMPD | 73.6 | 61.58 | 0.1985 | 4.194e-06 | 0.002539 |
| Sign.pvalue | Wilcox.pvalue | |
|---|---|---|
| ST30SMVO | 0.0304 | 0.0008135 |
| APOE4 | 0.07908 | 0.01249 |
| ST29SMVO | 0.0229 | 0.009357 |
| ST40CMVO | 0.05674 | 0.006351 |
| ST83CMCMP | 0.02135 | 0.01398 |
| MaxCVD | 0.2772 | 0.1218 |
| ST99CMCMP | 0.01705 | 0.006505 |
| ST12SMVO | 0.01443 | 0.007304 |
| Hippocampus | 0.01638 | 0.01103 |
| ST91CCMP | 0.0127 | 0.002119 |
| ST24TMT | 0.08269 | 0.03697 |
| ST83CCMP | 0.01422 | 0.007642 |
| ST32TMT | 0.1952 | 0.06407 |
| ST24CMVO | 0.002491 | 0.0009708 |
| Entorhinal | 0.001191 | 0.0001453 |
| stdCOMPD | 0.01306 | 0.001695 |
bootstrap:
gain <- length(ADAS_Tadpole_FRESA$BSWiMS.models$formula.list)/20
gplots::heatmap.2(gain*ADAS_Tadpole_FRESA$BSWiMS.models$bagging$formulaNetwork,trace="none",mar=c(10,10),main="B:SWiMS Formula Network")