Resultado da avaliação de Probabilidade e Estatística - Administração - AEDB - 2018

1º Bimestre


library(readr)
notas <- read_delim("notas.CSV", 
    ";", escape_double = FALSE, col_types = cols(notas = col_number()), 
    trim_ws = TRUE)
notas$notas <-notas$notas/10
library(psych)
table(notas)
     sexo
notas Feminino Masculino
  7          3         1
  7.1        2         0
  7.2        1         0
  7.3        3         0
  7.4        1         0
  7.5        1         3
  7.6        1         0
  7.7        1         0
  7.8        3         2
  7.9        0         1
  8          4         1
  8.1        2         2
  8.2        2         1
  8.3        2         1
  8.4        0         1
  8.5        1         0
  8.6        1         2
  8.8        1         0
  8.9        3         0
  9          2         1
  9.1        1         0
  9.4        1         0
  9.5        4         0
  10         7         1
library("graphics")
### Mosaic plot of observed values
mosaicplot(table(notas),  las=2, col="steelblue",
           main = "Tabulação das notas")

describeBy(notas$notas, notas$sexo)

 Descriptive statistics by group 
group: Feminino
   vars  n mean   sd median trimmed  mad min max range skew kurtosis   se
X1    1 47 8.43 0.99    8.2    8.41 1.19   7  10     3 0.22    -1.27 0.14
------------------------------------------------------------------ 
group: Masculino
   vars  n mean   sd median trimmed  mad min max range skew kurtosis   se
X1    1 17 8.14 0.69    8.1    8.09 0.44   7  10     3 0.91     0.93 0.17
library(ggplot2)

Attaching package: 㤼㸱ggplot2㤼㸲

The following objects are masked from 㤼㸱package:psych㤼㸲:

    %+%, alpha
a <- ggplot(notas, aes(x = notas))
#histogram Eng
# Position adjustment: "identity" (overlaid)
a + geom_histogram(breaks=seq(0,10,1),aes(color = sexo), fill = "white", alpha = 0.4,position="identity", closed = c("left"))+
  scale_x_continuous(limits = c(0,10), breaks=seq(0,10,1))+
  theme_minimal()+
  xlab("Notas")+
  ylab("Frequência")+
  ggtitle("Histograma - Sexo")

  
#histogram Eng
plot <- ggplot(data=notas, aes(x=notas)) + geom_histogram(breaks=seq(0,10,1),fill="royalblue", colour="black", alpha=.4, closed = c("left"))
plot <- plot + xlab("Notas")+
  ylab("Frequência")+
  ggtitle("Histograma")+
  theme(plot.title=element_text(size=rel(1), lineheight=.9,face="bold.italic", colour="black"))+
  theme(axis.title=element_text(size=12, lineheight=.9, face="bold", colour="black"))+
  stat_bin(bins=10, binwidth = 1,breaks=seq(0,10,1), geom="text", aes(label=..count..), vjust=-1, closed = c("left"))+ scale_x_continuous(limits = c(0,10), breaks=seq(0,10,1))+
  scale_y_continuous(expand = c(0,0),limits = c(0,max(ggplot_build(plot)$data[[1]]$count)*1.1),  breaks=seq(0,max(ggplot_build(plot)$data[[1]]$count)*1.1,10)) 
plot

a + geom_dotplot(aes(fill = sexo),binpositions = "all")+
  theme_minimal()

# Box plot with mean points
e <- ggplot(notas, aes(x = sexo, y = notas))
e + geom_boxplot(aes(color = sexo,fill = sexo)) +
stat_summary(fun.y = mean, geom = "point",
shape = 18, size = 4, color = "blue")+
  scale_color_brewer(palette="Dark2")+
  theme_minimal()

# Change point colors by dose (groups)
e + geom_jitter(aes(color = sexo), position = position_jitter(0.3)) +
theme_minimal()

LS0tDQp0aXRsZTogIlByb2JhYmlsaWRhZGUgZSBFc3RhdMOtc3RpY2EgLSBBZG1pbmlzdHJhw6fDo28gLSAywrogYW5vIC0gQUVEQiAtIDIwMTgiDQphdXRob3I6ICJQcm9mIERyLiBSb2JlcnRvIENhbXBvcyBMZW9uaSINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCiMjIyBSZXN1bHRhZG8gZGEgYXZhbGlhw6fDo28gZGUgUHJvYmFiaWxpZGFkZSBlIEVzdGF0w61zdGljYSAtIEFkbWluaXN0cmHDp8OjbyAtIEFFREIgLSAyMDE4DQojIyMgMcK6IEJpbWVzdHJlDQoNCioqKg0KYGBge3J9DQpsaWJyYXJ5KHJlYWRyKQ0Kbm90YXMgPC0gcmVhZF9kZWxpbSgibm90YXMuQ1NWIiwgDQogICAgIjsiLCBlc2NhcGVfZG91YmxlID0gRkFMU0UsIGNvbF90eXBlcyA9IGNvbHMobm90YXMgPSBjb2xfbnVtYmVyKCkpLCANCiAgICB0cmltX3dzID0gVFJVRSkNCm5vdGFzJG5vdGFzIDwtbm90YXMkbm90YXMvMTANCmBgYA0KDQpgYGB7cn0NCmxpYnJhcnkocHN5Y2gpDQp0YWJsZShub3RhcykNCg0KbGlicmFyeSgiZ3JhcGhpY3MiKQ0KIyMjIE1vc2FpYyBwbG90IG9mIG9ic2VydmVkIHZhbHVlcw0KbW9zYWljcGxvdCh0YWJsZShub3RhcyksICBsYXM9MiwgY29sPSJzdGVlbGJsdWUiLA0KICAgICAgICAgICBtYWluID0gIlRhYnVsYcOnw6NvIGRhcyBub3RhcyIpDQoNCmRlc2NyaWJlQnkobm90YXMkbm90YXMsIG5vdGFzJHNleG8pDQoNCg0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeShnZ3Bsb3QyKQ0KYSA8LSBnZ3Bsb3Qobm90YXMsIGFlcyh4ID0gbm90YXMpKQ0KDQojaGlzdG9ncmFtIEVuZw0KIyBQb3NpdGlvbiBhZGp1c3RtZW50OiAiaWRlbnRpdHkiIChvdmVybGFpZCkNCmEgKyBnZW9tX2hpc3RvZ3JhbShicmVha3M9c2VxKDAsMTAsMSksYWVzKGNvbG9yID0gc2V4byksIGZpbGwgPSAid2hpdGUiLCBhbHBoYSA9IDAuNCxwb3NpdGlvbj0iaWRlbnRpdHkiLCBjbG9zZWQgPSBjKCJsZWZ0IikpKw0KICBzY2FsZV94X2NvbnRpbnVvdXMobGltaXRzID0gYygwLDEwKSwgYnJlYWtzPXNlcSgwLDEwLDEpKSsNCiAgdGhlbWVfbWluaW1hbCgpKw0KICB4bGFiKCJOb3RhcyIpKw0KICB5bGFiKCJGcmVxdcOqbmNpYSIpKw0KICBnZ3RpdGxlKCJIaXN0b2dyYW1hIC0gU2V4byIpDQogIA0KI2hpc3RvZ3JhbSBFbmcNCnBsb3QgPC0gZ2dwbG90KGRhdGE9bm90YXMsIGFlcyh4PW5vdGFzKSkgKyBnZW9tX2hpc3RvZ3JhbShicmVha3M9c2VxKDAsMTAsMSksZmlsbD0icm95YWxibHVlIiwgY29sb3VyPSJibGFjayIsIGFscGhhPS40LCBjbG9zZWQgPSBjKCJsZWZ0IikpDQoNCnBsb3QgPC0gcGxvdCArIHhsYWIoIk5vdGFzIikrDQogIHlsYWIoIkZyZXF1w6puY2lhIikrDQogIGdndGl0bGUoIkhpc3RvZ3JhbWEiKSsNCiAgdGhlbWUocGxvdC50aXRsZT1lbGVtZW50X3RleHQoc2l6ZT1yZWwoMSksIGxpbmVoZWlnaHQ9LjksZmFjZT0iYm9sZC5pdGFsaWMiLCBjb2xvdXI9ImJsYWNrIikpKw0KICB0aGVtZShheGlzLnRpdGxlPWVsZW1lbnRfdGV4dChzaXplPTEyLCBsaW5laGVpZ2h0PS45LCBmYWNlPSJib2xkIiwgY29sb3VyPSJibGFjayIpKSsNCiAgc3RhdF9iaW4oYmlucz0xMCwgYmlud2lkdGggPSAxLGJyZWFrcz1zZXEoMCwxMCwxKSwgZ2VvbT0idGV4dCIsIGFlcyhsYWJlbD0uLmNvdW50Li4pLCB2anVzdD0tMSwgY2xvc2VkID0gYygibGVmdCIpKSsgc2NhbGVfeF9jb250aW51b3VzKGxpbWl0cyA9IGMoMCwxMCksIGJyZWFrcz1zZXEoMCwxMCwxKSkrDQogIHNjYWxlX3lfY29udGludW91cyhleHBhbmQgPSBjKDAsMCksbGltaXRzID0gYygwLG1heChnZ3Bsb3RfYnVpbGQocGxvdCkkZGF0YVtbMV1dJGNvdW50KSoxLjEpLCAgYnJlYWtzPXNlcSgwLG1heChnZ3Bsb3RfYnVpbGQocGxvdCkkZGF0YVtbMV1dJGNvdW50KSoxLjEsMTApKSANCnBsb3QNCg0KDQoNCmEgKyBnZW9tX2RvdHBsb3QoYWVzKGZpbGwgPSBzZXhvKSxiaW5wb3NpdGlvbnMgPSAiYWxsIikrDQogIHRoZW1lX21pbmltYWwoKQ0KDQoNCiMgQm94IHBsb3Qgd2l0aCBtZWFuIHBvaW50cw0KZSA8LSBnZ3Bsb3Qobm90YXMsIGFlcyh4ID0gc2V4bywgeSA9IG5vdGFzKSkNCmUgKyBnZW9tX2JveHBsb3QoYWVzKGNvbG9yID0gc2V4byxmaWxsID0gc2V4bykpICsNCnN0YXRfc3VtbWFyeShmdW4ueSA9IG1lYW4sIGdlb20gPSAicG9pbnQiLA0Kc2hhcGUgPSAxOCwgc2l6ZSA9IDQsIGNvbG9yID0gImJsdWUiKSsNCiAgc2NhbGVfY29sb3JfYnJld2VyKHBhbGV0dGU9IkRhcmsyIikrDQogIHRoZW1lX21pbmltYWwoKQ0KDQojIENoYW5nZSBwb2ludCBjb2xvcnMgYnkgZG9zZSAoZ3JvdXBzKQ0KZSArIGdlb21faml0dGVyKGFlcyhjb2xvciA9IHNleG8pLCBwb3NpdGlvbiA9IHBvc2l0aW9uX2ppdHRlcigwLjMpKSArDQp0aGVtZV9taW5pbWFsKCkNCg0KYGBgDQo=