1º Bimestre
library(readr)
notas <- read_delim("notas.CSV",
";", escape_double = FALSE, col_types = cols(notas = col_number()),
trim_ws = TRUE)
notas$notas <-notas$notas/10
library(psych)
table(notas)
sexo
notas Feminino Masculino
7 3 1
7.1 2 0
7.2 1 0
7.3 3 0
7.4 1 0
7.5 1 3
7.6 1 0
7.7 1 0
7.8 3 2
7.9 0 1
8 4 1
8.1 2 2
8.2 2 1
8.3 2 1
8.4 0 1
8.5 1 0
8.6 1 2
8.8 1 0
8.9 3 0
9 2 1
9.1 1 0
9.4 1 0
9.5 4 0
10 7 1
library("graphics")
### Mosaic plot of observed values
mosaicplot(table(notas), las=2, col="steelblue",
main = "Tabulação das notas")

describeBy(notas$notas, notas$sexo)
Descriptive statistics by group
group: Feminino
vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 47 8.43 0.99 8.2 8.41 1.19 7 10 3 0.22 -1.27 0.14
------------------------------------------------------------------
group: Masculino
vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 17 8.14 0.69 8.1 8.09 0.44 7 10 3 0.91 0.93 0.17
library(ggplot2)
Attaching package: 㤼㸱ggplot2㤼㸲
The following objects are masked from 㤼㸱package:psych㤼㸲:
%+%, alpha
a <- ggplot(notas, aes(x = notas))
#histogram Eng
# Position adjustment: "identity" (overlaid)
a + geom_histogram(breaks=seq(0,10,1),aes(color = sexo), fill = "white", alpha = 0.4,position="identity", closed = c("left"))+
scale_x_continuous(limits = c(0,10), breaks=seq(0,10,1))+
theme_minimal()+
xlab("Notas")+
ylab("Frequência")+
ggtitle("Histograma - Sexo")

#histogram Eng
plot <- ggplot(data=notas, aes(x=notas)) + geom_histogram(breaks=seq(0,10,1),fill="royalblue", colour="black", alpha=.4, closed = c("left"))
plot <- plot + xlab("Notas")+
ylab("Frequência")+
ggtitle("Histograma")+
theme(plot.title=element_text(size=rel(1), lineheight=.9,face="bold.italic", colour="black"))+
theme(axis.title=element_text(size=12, lineheight=.9, face="bold", colour="black"))+
stat_bin(bins=10, binwidth = 1,breaks=seq(0,10,1), geom="text", aes(label=..count..), vjust=-1, closed = c("left"))+ scale_x_continuous(limits = c(0,10), breaks=seq(0,10,1))+
scale_y_continuous(expand = c(0,0),limits = c(0,max(ggplot_build(plot)$data[[1]]$count)*1.1), breaks=seq(0,max(ggplot_build(plot)$data[[1]]$count)*1.1,10))
plot

a + geom_dotplot(aes(fill = sexo),binpositions = "all")+
theme_minimal()

# Box plot with mean points
e <- ggplot(notas, aes(x = sexo, y = notas))
e + geom_boxplot(aes(color = sexo,fill = sexo)) +
stat_summary(fun.y = mean, geom = "point",
shape = 18, size = 4, color = "blue")+
scale_color_brewer(palette="Dark2")+
theme_minimal()

# Change point colors by dose (groups)
e + geom_jitter(aes(color = sexo), position = position_jitter(0.3)) +
theme_minimal()

LS0tDQp0aXRsZTogIlByb2JhYmlsaWRhZGUgZSBFc3RhdMOtc3RpY2EgLSBBZG1pbmlzdHJhw6fDo28gLSAywrogYW5vIC0gQUVEQiAtIDIwMTgiDQphdXRob3I6ICJQcm9mIERyLiBSb2JlcnRvIENhbXBvcyBMZW9uaSINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCiMjIyBSZXN1bHRhZG8gZGEgYXZhbGlhw6fDo28gZGUgUHJvYmFiaWxpZGFkZSBlIEVzdGF0w61zdGljYSAtIEFkbWluaXN0cmHDp8OjbyAtIEFFREIgLSAyMDE4DQojIyMgMcK6IEJpbWVzdHJlDQoNCioqKg0KYGBge3J9DQpsaWJyYXJ5KHJlYWRyKQ0Kbm90YXMgPC0gcmVhZF9kZWxpbSgibm90YXMuQ1NWIiwgDQogICAgIjsiLCBlc2NhcGVfZG91YmxlID0gRkFMU0UsIGNvbF90eXBlcyA9IGNvbHMobm90YXMgPSBjb2xfbnVtYmVyKCkpLCANCiAgICB0cmltX3dzID0gVFJVRSkNCm5vdGFzJG5vdGFzIDwtbm90YXMkbm90YXMvMTANCmBgYA0KDQpgYGB7cn0NCmxpYnJhcnkocHN5Y2gpDQp0YWJsZShub3RhcykNCg0KbGlicmFyeSgiZ3JhcGhpY3MiKQ0KIyMjIE1vc2FpYyBwbG90IG9mIG9ic2VydmVkIHZhbHVlcw0KbW9zYWljcGxvdCh0YWJsZShub3RhcyksICBsYXM9MiwgY29sPSJzdGVlbGJsdWUiLA0KICAgICAgICAgICBtYWluID0gIlRhYnVsYcOnw6NvIGRhcyBub3RhcyIpDQoNCmRlc2NyaWJlQnkobm90YXMkbm90YXMsIG5vdGFzJHNleG8pDQoNCg0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeShnZ3Bsb3QyKQ0KYSA8LSBnZ3Bsb3Qobm90YXMsIGFlcyh4ID0gbm90YXMpKQ0KDQojaGlzdG9ncmFtIEVuZw0KIyBQb3NpdGlvbiBhZGp1c3RtZW50OiAiaWRlbnRpdHkiIChvdmVybGFpZCkNCmEgKyBnZW9tX2hpc3RvZ3JhbShicmVha3M9c2VxKDAsMTAsMSksYWVzKGNvbG9yID0gc2V4byksIGZpbGwgPSAid2hpdGUiLCBhbHBoYSA9IDAuNCxwb3NpdGlvbj0iaWRlbnRpdHkiLCBjbG9zZWQgPSBjKCJsZWZ0IikpKw0KICBzY2FsZV94X2NvbnRpbnVvdXMobGltaXRzID0gYygwLDEwKSwgYnJlYWtzPXNlcSgwLDEwLDEpKSsNCiAgdGhlbWVfbWluaW1hbCgpKw0KICB4bGFiKCJOb3RhcyIpKw0KICB5bGFiKCJGcmVxdcOqbmNpYSIpKw0KICBnZ3RpdGxlKCJIaXN0b2dyYW1hIC0gU2V4byIpDQogIA0KI2hpc3RvZ3JhbSBFbmcNCnBsb3QgPC0gZ2dwbG90KGRhdGE9bm90YXMsIGFlcyh4PW5vdGFzKSkgKyBnZW9tX2hpc3RvZ3JhbShicmVha3M9c2VxKDAsMTAsMSksZmlsbD0icm95YWxibHVlIiwgY29sb3VyPSJibGFjayIsIGFscGhhPS40LCBjbG9zZWQgPSBjKCJsZWZ0IikpDQoNCnBsb3QgPC0gcGxvdCArIHhsYWIoIk5vdGFzIikrDQogIHlsYWIoIkZyZXF1w6puY2lhIikrDQogIGdndGl0bGUoIkhpc3RvZ3JhbWEiKSsNCiAgdGhlbWUocGxvdC50aXRsZT1lbGVtZW50X3RleHQoc2l6ZT1yZWwoMSksIGxpbmVoZWlnaHQ9LjksZmFjZT0iYm9sZC5pdGFsaWMiLCBjb2xvdXI9ImJsYWNrIikpKw0KICB0aGVtZShheGlzLnRpdGxlPWVsZW1lbnRfdGV4dChzaXplPTEyLCBsaW5laGVpZ2h0PS45LCBmYWNlPSJib2xkIiwgY29sb3VyPSJibGFjayIpKSsNCiAgc3RhdF9iaW4oYmlucz0xMCwgYmlud2lkdGggPSAxLGJyZWFrcz1zZXEoMCwxMCwxKSwgZ2VvbT0idGV4dCIsIGFlcyhsYWJlbD0uLmNvdW50Li4pLCB2anVzdD0tMSwgY2xvc2VkID0gYygibGVmdCIpKSsgc2NhbGVfeF9jb250aW51b3VzKGxpbWl0cyA9IGMoMCwxMCksIGJyZWFrcz1zZXEoMCwxMCwxKSkrDQogIHNjYWxlX3lfY29udGludW91cyhleHBhbmQgPSBjKDAsMCksbGltaXRzID0gYygwLG1heChnZ3Bsb3RfYnVpbGQocGxvdCkkZGF0YVtbMV1dJGNvdW50KSoxLjEpLCAgYnJlYWtzPXNlcSgwLG1heChnZ3Bsb3RfYnVpbGQocGxvdCkkZGF0YVtbMV1dJGNvdW50KSoxLjEsMTApKSANCnBsb3QNCg0KDQoNCmEgKyBnZW9tX2RvdHBsb3QoYWVzKGZpbGwgPSBzZXhvKSxiaW5wb3NpdGlvbnMgPSAiYWxsIikrDQogIHRoZW1lX21pbmltYWwoKQ0KDQoNCiMgQm94IHBsb3Qgd2l0aCBtZWFuIHBvaW50cw0KZSA8LSBnZ3Bsb3Qobm90YXMsIGFlcyh4ID0gc2V4bywgeSA9IG5vdGFzKSkNCmUgKyBnZW9tX2JveHBsb3QoYWVzKGNvbG9yID0gc2V4byxmaWxsID0gc2V4bykpICsNCnN0YXRfc3VtbWFyeShmdW4ueSA9IG1lYW4sIGdlb20gPSAicG9pbnQiLA0Kc2hhcGUgPSAxOCwgc2l6ZSA9IDQsIGNvbG9yID0gImJsdWUiKSsNCiAgc2NhbGVfY29sb3JfYnJld2VyKHBhbGV0dGU9IkRhcmsyIikrDQogIHRoZW1lX21pbmltYWwoKQ0KDQojIENoYW5nZSBwb2ludCBjb2xvcnMgYnkgZG9zZSAoZ3JvdXBzKQ0KZSArIGdlb21faml0dGVyKGFlcyhjb2xvciA9IHNleG8pLCBwb3NpdGlvbiA9IHBvc2l0aW9uX2ppdHRlcigwLjMpKSArDQp0aGVtZV9taW5pbWFsKCkNCg0KYGBgDQo=