library(readr)
BreastCancer <- read_csv("./WSBC/wdbc.csv",col_names = FALSE)
BreastCancer <- as.data.frame(BreastCancer)
BreastCancer$Class <- 1*(BreastCancer$X2 == "M")
rownames(BreastCancer) <- BreastCancer$X1
BreastCancer$X1 <- NULL
BreastCancer$X2 <- NULL
ModelFresa <- FRESA.Model(formula = Class ~ 1,data = BreastCancer,repeats = 20)
cp <- CVBenchmark(theData = BreastCancer, theOutcome = "Class", reps = 100, fraction = 0.2, topIncluded = 31)
elapcol <- names(cp$times[[1]]) == "elapsed"
cputimes <- list(Fresa = mean(cp$times$fresatime[ elapcol ]),LASSO = mean(cp$times$LASSOtime[ elapcol ]),RF = mean(cp$times$RFtime[ elapcol ]),SVM = mean(cp$times$SVMtime[ elapcol ]),FeaLect=mean(cp$times$FeaLecttime[ elapcol ]))
featsize <- list(Fresa = mean(cp$featSize$FRESASize),LASSO = mean(cp$featSize$LASSOSize),Univ = mean(cp$featSize$UNIVSize))
#The Times
pander::pander(cputimes)
pander::pander(featsize)
plotBEREvolution(cp,30,main="Balanced Error Rate", location="topright")
bp <- barPlotCiError(as.matrix(cp$errorciTable),metricname="Balanced Error",thesets=thesets,themethod=theMethod,main="Balanced Error",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"))
pander::pander(bp$barMatrix,caption = "Balanced Error Rate",round = 3)
| Default Classifier | Filtered SVM Classifier | |
|---|---|---|
| B:SWiMS | 0.038 | 0.05 |
| LASSO | 0.036 | 0.053 |
| RF | 0.053 | 0.062 |
| SVM | 0.062 | 0.062 |
pander::pander(bp$ciTable,caption = "Balanced Error Rate with 95%CI",round = 3)
| Balanced Error | lower | upper | |
|---|---|---|---|
| Default Classifier | 0.038 | 0.019 | 0.068 |
| Default Classifier | 0.036 | 0.018 | 0.066 |
| Default Classifier | 0.053 | 0.03 | 0.087 |
| Default Classifier | 0.062 | 0.038 | 0.096 |
| Filtered SVM Classifier | 0.05 | 0.029 | 0.082 |
| Filtered SVM Classifier | 0.053 | 0.031 | 0.085 |
| Filtered SVM Classifier | 0.062 | 0.038 | 0.096 |
| Filtered SVM Classifier | 0.062 | 0.038 | 0.096 |
bp <- barPlotCiError(as.matrix(cp$accciTable),metricname="Accuracy",thesets=thesets,themethod=theMethod,main="Accuracy",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"))
pander::pander(bp$barMatrix,caption = "Accuracy",round = 3)
| Default Classifier | Filtered SVM Classifier | |
|---|---|---|
| B:SWiMS | 0.967 | 0.96 |
| LASSO | 0.97 | 0.958 |
| RF | 0.953 | 0.951 |
| SVM | 0.951 | 0.951 |
pander::pander(bp$ciTable,caption = "Accuracy with 95%CI",round = 3)
| Accuracy | lower | upper | |
|---|---|---|---|
| Default Classifier | 0.967 | 0.948 | 0.98 |
| Default Classifier | 0.97 | 0.953 | 0.983 |
| Default Classifier | 0.953 | 0.932 | 0.968 |
| Default Classifier | 0.951 | 0.93 | 0.967 |
| Filtered SVM Classifier | 0.96 | 0.94 | 0.974 |
| Filtered SVM Classifier | 0.958 | 0.938 | 0.973 |
| Filtered SVM Classifier | 0.951 | 0.93 | 0.967 |
| Filtered SVM Classifier | 0.951 | 0.93 | 0.967 |
bp <- barPlotCiError(as.matrix(cp$aucTable),metricname="ROC AUC",thesets=thesets,themethod=theMethod,main="ROC AUC",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"))
pander::pander(bp$barMatrix,caption = "ROC AUC",round = 3)
| Default Classifier | Filtered SVM Classifier | |
|---|---|---|
| B:SWiMS | 0.989 | 0.992 |
| LASSO | 0.991 | 0.989 |
| RF | 0.937 | 0.991 |
| SVM | 0.991 | 0.991 |
pander::pander(bp$ciTable,caption = "ROC AUC with 95%CI",round = 3)
| ROC AUC | lower | upper | |
|---|---|---|---|
| Default Classifier | 0.989 | 0.98 | 0.994 |
| Default Classifier | 0.991 | 0.982 | 0.996 |
| Default Classifier | 0.937 | 0.902 | 0.96 |
| Default Classifier | 0.991 | 0.985 | 0.995 |
| Filtered SVM Classifier | 0.992 | 0.983 | 0.996 |
| Filtered SVM Classifier | 0.989 | 0.98 | 0.995 |
| Filtered SVM Classifier | 0.991 | 0.985 | 0.995 |
| Filtered SVM Classifier | 0.991 | 0.985 | 0.995 |
gain <- length(ModelFresa$BSWiMS.models$formula.list)/20
gplots::heatmap.2(gain*ModelFresa$BSWiMS.models$bagging$formulaNetwork,trace="none",mar=c(10,10),main="B:SWiMS Formula Network")
pander::pander(summary(ModelFresa$BSWiMS.model,caption="WDBC",round = 3))
coefficients:
| Estimate | lower | OR | upper | u.Accuracy | |
|---|---|---|---|---|---|
| X25 | 0.04581 | 1.033 | 1.047 | 1.061 | 0.9125 |
| X24 | 0.05255 | 1.038 | 1.054 | 1.07 | 0.7182 |
| X27 | 15.28 | 19393 | 4311222 | 958406012 | 0.6956 |
| X4 | 0.09064 | 1.067 | 1.095 | 1.124 | 0.729 |
| X30 | 12.01 | 1963 | 164358 | 13758261 | 0.8974 |
| X26 | 0.005665 | 1.003 | 1.006 | 1.008 | 0.8983 |
| X3 | -0.3646 | 0.5484 | 0.6945 | 0.8794 | 0.8577 |
| X23 | 0.3592 | 1.192 | 1.432 | 1.721 | 0.9014 |
| X29 | 2.128 | 0.4473 | 8.402 | 157.8 | 0.8408 |
| X10 | 6.158 | 65.85 | 472.6 | 3391 | 0.9124 |
| X31 | 3.793 | 1.211 | 44.4 | 1628 | 0.6635 |
| X17 | 82.83 | 7.277e+20 | 9.346e+35 | 1.2e+51 | 0.5373 |
| X6 | -0.0009275 | 0.9954 | 0.9991 | 1.003 | 0.8603 |
| X5 | -0.001276 | 0.9781 | 0.9987 | 1.02 | 0.8708 |
| X16 | 0.1544 | 1.081 | 1.167 | 1.26 | 0.855 |
| X19 | -4.231 | 0.003152 | 0.01453 | 0.06702 | 0.6913 |
| X13 | -9.181 | 6.639e-07 | 0.000103 | 0.01599 | 0.8047 |
| X9 | 11.7 | 957.8 | 120025 | 15041453 | 0.8798 |
| X18 | -32.9 | 3.951e-23 | 5.143e-15 | 6.696e-07 | 0.6645 |
| X32 | 23.86 | 10764 | 2.296e+10 | 4.898e+16 | 0.6425 |
| X28 | 2.376 | 3.879 | 10.76 | 29.87 | 0.7844 |
| X22 | -232.5 | 6.212e-165 | 1.098e-101 | 1.942e-38 | 0.5872 |
| X15 | 0.09419 | 1.06 | 1.099 | 1.139 | 0.808 |
| r.Accuracy | full.Accuracy | u.AUC | r.AUC | full.AUC | IDI | |
|---|---|---|---|---|---|---|
| X25 | 0.7631 | 0.9685 | 0.9125 | 0.7631 | 0.9685 | 0.549 |
| X24 | 0.9449 | 0.9685 | 0.7182 | 0.9449 | 0.9685 | 0.04423 |
| X27 | 0.9415 | 0.9685 | 0.6956 | 0.9415 | 0.9685 | 0.07089 |
| X4 | 0.9518 | 0.9735 | 0.729 | 0.9518 | 0.9735 | 0.04017 |
| X30 | 0.9338 | 0.9735 | 0.8974 | 0.9338 | 0.9735 | 0.09582 |
| X26 | 0.9385 | 0.9725 | 0.8983 | 0.9385 | 0.9725 | 0.06049 |
| X3 | 0.9607 | 0.9725 | 0.8577 | 0.9607 | 0.9725 | 0.0181 |
| X23 | 0.9186 | 0.9605 | 0.9014 | 0.9186 | 0.9605 | 0.09845 |
| X29 | 0.9483 | 0.9611 | 0.8408 | 0.9483 | 0.9611 | 0.03302 |
| X10 | 0.9382 | 0.9537 | 0.9124 | 0.9382 | 0.9537 | 0.0414 |
| X31 | 0.9537 | 0.9609 | 0.6635 | 0.9537 | 0.9609 | 0.01814 |
| X17 | 0.9462 | 0.9614 | 0.5373 | 0.9462 | 0.9614 | 0.02165 |
| X6 | 0.9465 | 0.9614 | 0.8603 | 0.9465 | 0.9614 | 0.02583 |
| X5 | 0.9524 | 0.9553 | 0.8708 | 0.9524 | 0.9553 | 0.02646 |
| X16 | 0.9301 | 0.9576 | 0.855 | 0.9301 | 0.9576 | 0.08099 |
| X19 | 0.9407 | 0.9549 | 0.6913 | 0.9407 | 0.9549 | 0.04113 |
| X13 | 0.9488 | 0.9583 | 0.8047 | 0.9488 | 0.9583 | 0.02754 |
| X9 | 0.9413 | 0.9578 | 0.8798 | 0.9413 | 0.9578 | 0.03792 |
| X18 | 0.9388 | 0.9573 | 0.6645 | 0.9388 | 0.9573 | 0.05232 |
| X32 | 0.9289 | 0.9586 | 0.6425 | 0.9289 | 0.9586 | 0.06985 |
| X28 | 0.9256 | 0.9548 | 0.7844 | 0.9256 | 0.9548 | 0.08011 |
| X22 | 0.9344 | 0.9586 | 0.5872 | 0.9344 | 0.9586 | 0.07334 |
| X15 | 0.9396 | 0.9546 | 0.808 | 0.9396 | 0.9546 | 0.03234 |
| NRI | z.IDI | z.NRI | |
|---|---|---|---|
| X25 | 1.792 | 30.08 | 54.77 |
| X24 | 1.357 | 6.069 | 25.41 |
| X27 | 1.311 | 7.858 | 24.83 |
| X4 | 1.486 | 5.496 | 30.95 |
| X30 | 1.188 | 9.246 | 22.92 |
| X26 | 1.228 | 7.043 | 22.58 |
| X3 | 0.7383 | 4 | 12.07 |
| X23 | 1.265 | 8.941 | 23.43 |
| X29 | 0.8531 | 4.934 | 14.79 |
| X10 | 1.182 | 5.29 | 21.32 |
| X31 | 0.5977 | 3.75 | 9.731 |
| X17 | 0.8372 | 4.467 | 12.93 |
| X6 | 0.6567 | 4.196 | 10.61 |
| X5 | 0.8142 | 4.229 | 12.59 |
| X16 | 1.427 | 7.675 | 28.56 |
| X19 | 1.04 | 5.426 | 18.64 |
| X13 | 1 | 4.314 | 16.81 |
| X9 | 1.071 | 5.408 | 19.09 |
| X18 | 1.455 | 6.725 | 31.21 |
| X32 | 1.359 | 7.273 | 26.14 |
| X28 | 1.528 | 7.778 | 33.4 |
| X22 | 1.419 | 8.244 | 28.91 |
| X15 | 1.07 | 5.163 | 17.48 |
bootstrap: