This is monthly airline passenger number frm 1949-1961. There is 144 obervation in the dataset, and no missing data. The unit is in thousands.
data(AirPassengers)
str(AirPassengers)
## Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119 ...
summary(AirPassengers)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 104.0 180.0 265.5 280.3 360.5 622.0
plot(AirPassengers, ylab="Passengers (1000s)", type="o", pch =20, col="red")
Use decompose function to oberver time-series data using moving averages.
AirPassengers.decompM <- decompose(AirPassengers, type = "multiplicative")
plot(AirPassengers.decompM)
t <- seq(1, 144, 1)
lm_number<-lm(AirPassengers.decompM$trend~ t )
summary(lm_number)
##
## Call:
## lm(formula = AirPassengers.decompM$trend ~ t)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.9162 -6.0845 0.6094 5.8658 23.4748
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 84.64827 2.05100 41.27 <2e-16 ***
## t 2.66694 0.02504 106.50 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.96 on 130 degrees of freedom
## (12 observations deleted due to missingness)
## Multiple R-squared: 0.9887, Adjusted R-squared: 0.9886
## F-statistic: 1.134e+04 on 1 and 130 DF, p-value: < 2.2e-16
plot(lm_number)