Sonar Results
#The Times
pander::pander(cputimes)
- Fresa: 2.394
- LASSO: 0.4246
- RF: 0.1119
- SVM: 0.0209
- FeaLect: 2.477
pander::pander(featsize)
- Fresa: 16.69
- LASSO: 16.08
- Univ: 25.43
plotBEREvolution(cp,30,main="Balanced Error Rate", location="topright")

bp <- barPlotCiError(as.matrix(cp$errorciTable),metricname="Balanced Error",thesets=thesets,themethod=theMethod,main="Balanced Error",offsets = c(0.5,0.05),args.legend = list(x = "topright"))

pander::pander(bp$barMatrix,caption = "Balanced Error Rate",round = 3)
Balanced Error Rate
| B:SWiMS |
0.238 |
0.22 |
| LASSO |
0.241 |
0.206 |
| RF |
0.203 |
0.196 |
| SVM |
0.182 |
0.191 |
pander::pander(bp$ciTable,caption = "Balanced Error Rate with 95%CI",round = 3)
Balanced Error Rate with 95%CI
| Default Classifier |
0.238 |
0.16 |
0.332 |
| Default Classifier |
0.241 |
0.163 |
0.335 |
| Default Classifier |
0.203 |
0.132 |
0.291 |
| Default Classifier |
0.182 |
0.114 |
0.268 |
| Filtered SVM Classifier |
0.22 |
0.145 |
0.311 |
| Filtered SVM Classifier |
0.206 |
0.134 |
0.296 |
| Filtered SVM Classifier |
0.196 |
0.125 |
0.284 |
| Filtered SVM Classifier |
0.191 |
0.122 |
0.279 |
bp <- barPlotCiError(as.matrix(cp$accciTable),metricname="Accuracy",thesets=thesets,themethod=theMethod,main="Accuracy",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"))

pander::pander(bp$barMatrix,caption = "Accuracy",round = 3)
Accuracy
| B:SWiMS |
0.764 |
0.784 |
| LASSO |
0.76 |
0.798 |
| RF |
0.803 |
0.808 |
| SVM |
0.822 |
0.812 |
pander::pander(bp$ciTable,caption = "Accuracy with 95%CI",round = 3)
Accuracy with 95%CI
| Default Classifier |
0.764 |
0.701 |
0.82 |
| Default Classifier |
0.76 |
0.696 |
0.816 |
| Default Classifier |
0.803 |
0.742 |
0.855 |
| Default Classifier |
0.822 |
0.763 |
0.872 |
| Filtered SVM Classifier |
0.784 |
0.721 |
0.838 |
| Filtered SVM Classifier |
0.798 |
0.737 |
0.85 |
| Filtered SVM Classifier |
0.808 |
0.747 |
0.859 |
| Filtered SVM Classifier |
0.812 |
0.753 |
0.863 |
bp <- barPlotCiError(as.matrix(cp$aucTable),metricname="ROC AUC",thesets=thesets,themethod=theMethod,main="ROC AUC",offsets = c(0.5,0.05),args.legend = list(x = "bottomright"))

pander::pander(bp$barMatrix,caption = "ROC AUC",round = 3)
ROC AUC
| B:SWiMS |
0.818 |
0.855 |
| LASSO |
0.82 |
0.863 |
| RF |
0.794 |
0.892 |
| SVM |
0.914 |
0.887 |
pander::pander(bp$ciTable,caption = "ROC AUC with 95%CI",round = 3)
ROC AUC with 95%CI ## Analysis of selected features
| Default Classifier |
0.818 |
0.751 |
0.871 |
| Default Classifier |
0.82 |
0.751 |
0.876 |
| Default Classifier |
0.794 |
0.715 |
0.869 |
| Default Classifier |
0.914 |
0.859 |
0.957 |
| Filtered SVM Classifier |
0.855 |
0.773 |
0.912 |
| Filtered SVM Classifier |
0.863 |
0.786 |
0.93 |
| Filtered SVM Classifier |
0.892 |
0.818 |
0.938 |
| Filtered SVM Classifier |
0.887 |
0.824 |
0.938 |
gain <- length(mFRESA$BSWiMS.models$formula.list)/20
gplots::heatmap.2(gain*mFRESA$BSWiMS.models$bagging$formulaNetwork,trace="none",mar=c(10,10),main="B:SWiMS Formula Network")

pander::pander(summary(mFRESA$BSWiMS.model,caption="Sonar",round = 3))
coefficients:
Table continues below
| V11 |
1.73 |
4.806 |
5.641 |
6.622 |
0.7452 |
0.7197 |
| V36 |
-0.7629 |
0.3606 |
0.4663 |
0.603 |
0.6587 |
0.7243 |
| V12 |
1.121 |
2.556 |
3.069 |
3.686 |
0.7404 |
0.7142 |
| V45 |
1.848 |
5.3 |
6.348 |
7.602 |
0.6394 |
0.7572 |
| V49 |
4.672 |
43.66 |
107 |
262.1 |
0.6827 |
0.7337 |
| V37 |
-0.9108 |
0.2975 |
0.4022 |
0.5438 |
0.6346 |
0.7142 |
| V4 |
3.847 |
18.14 |
46.85 |
121 |
0.6058 |
0.7435 |
| V10 |
1.272 |
2.77 |
3.567 |
4.594 |
0.6971 |
0.7233 |
| V22 |
0.2324 |
1.22 |
1.262 |
1.305 |
0.5865 |
0.7051 |
| V47 |
1.817 |
4.418 |
6.151 |
8.564 |
0.6202 |
0.7144 |
| V9 |
0.957 |
1.99 |
2.604 |
3.407 |
0.6923 |
0.6998 |
| V21 |
0.5068 |
1.422 |
1.66 |
1.937 |
0.6298 |
0.7075 |
| V48 |
2.979 |
6.817 |
19.66 |
56.7 |
0.6875 |
0.7166 |
| V35 |
-0.5233 |
0.4655 |
0.5926 |
0.7543 |
0.5865 |
0.7132 |
| V44 |
0.9383 |
1.86 |
2.556 |
3.512 |
0.5913 |
0.7272 |
| V13 |
1.198 |
1.651 |
3.314 |
6.655 |
0.6683 |
0.701 |
| V23 |
0.04529 |
1.017 |
1.046 |
1.076 |
0.5577 |
0.7163 |
| V52 |
5.211 |
4.999 |
183.2 |
6716 |
0.6394 |
0.7232 |
| V46 |
0.5315 |
1.351 |
1.701 |
2.143 |
0.6106 |
0.6822 |
| V14 |
-0.5764 |
0.3878 |
0.5619 |
0.8143 |
0.5962 |
0.732 |
| V51 |
3.305 |
2.89 |
27.24 |
256.6 |
0.6683 |
0.704 |
| V20 |
0.1096 |
1.049 |
1.116 |
1.187 |
0.6394 |
0.6659 |
| V34 |
-0.07043 |
0.8942 |
0.932 |
0.9714 |
0.5865 |
0.6659 |
| V1 |
0.7944 |
1.354 |
2.213 |
3.617 |
0.601 |
0.7007 |
| V43 |
0.07518 |
1.035 |
1.078 |
1.123 |
0.5865 |
0.6474 |
Table continues below
| V11 |
0.7827 |
0.7418 |
0.7173 |
0.7827 |
0.1213 |
0.7105 |
| V36 |
0.7827 |
0.6516 |
0.722 |
0.7827 |
0.09448 |
0.5792 |
| V12 |
0.7582 |
0.736 |
0.7129 |
0.7559 |
0.09728 |
0.8067 |
| V45 |
0.7788 |
0.6446 |
0.7558 |
0.7785 |
0.1154 |
0.7494 |
| V49 |
0.7582 |
0.6832 |
0.732 |
0.7559 |
0.1052 |
0.8231 |
| V37 |
0.7661 |
0.6258 |
0.7147 |
0.7648 |
0.09023 |
0.6 |
| V4 |
0.7702 |
0.6053 |
0.7412 |
0.7689 |
0.04784 |
0.4472 |
| V10 |
0.7673 |
0.6961 |
0.7216 |
0.766 |
0.05653 |
0.7073 |
| V22 |
0.7504 |
0.5782 |
0.7035 |
0.7484 |
0.0479 |
0.4601 |
| V47 |
0.7469 |
0.6201 |
0.7112 |
0.7447 |
0.0951 |
0.6052 |
| V9 |
0.7418 |
0.6929 |
0.697 |
0.7393 |
0.06433 |
0.5653 |
| V21 |
0.7419 |
0.6239 |
0.7052 |
0.7391 |
0.05855 |
0.6239 |
| V48 |
0.7522 |
0.6877 |
0.7124 |
0.7496 |
0.08497 |
0.6853 |
| V35 |
0.7406 |
0.5775 |
0.714 |
0.7378 |
0.06696 |
0.3532 |
| V44 |
0.7564 |
0.5924 |
0.7245 |
0.7555 |
0.07336 |
0.62 |
| V13 |
0.7391 |
0.6658 |
0.6985 |
0.7366 |
0.06626 |
0.6468 |
| V23 |
0.7548 |
0.544 |
0.716 |
0.7534 |
0.045 |
0.5125 |
| V52 |
0.7397 |
0.6394 |
0.7203 |
0.7375 |
0.04058 |
0.4548 |
| V46 |
0.7142 |
0.6124 |
0.678 |
0.7121 |
0.09229 |
0.6174 |
| V14 |
0.7572 |
0.5885 |
0.7286 |
0.7543 |
0.04007 |
0.4114 |
| V51 |
0.7225 |
0.6664 |
0.701 |
0.7207 |
0.04151 |
0.5077 |
| V20 |
0.726 |
0.6362 |
0.6644 |
0.7231 |
0.05709 |
0.6015 |
| V34 |
0.7163 |
0.5769 |
0.6671 |
0.7154 |
0.05185 |
0.3488 |
| V1 |
0.726 |
0.6027 |
0.6973 |
0.725 |
0.04452 |
0.3551 |
| V43 |
0.7179 |
0.5834 |
0.646 |
0.7154 |
0.05631 |
0.5037 |
| V11 |
5.498 |
5.514 |
| V36 |
4.72 |
4.359 |
| V12 |
4.647 |
6.356 |
| V45 |
5.058 |
6.032 |
| V49 |
4.763 |
6.671 |
| V37 |
4.578 |
4.547 |
| V4 |
3.588 |
3.404 |
| V10 |
3.757 |
5.507 |
| V22 |
3.202 |
3.413 |
| V47 |
4.723 |
4.748 |
| V9 |
3.899 |
4.363 |
| V21 |
3.529 |
4.732 |
| V48 |
4.411 |
5.32 |
| V35 |
3.941 |
2.605 |
| V44 |
3.957 |
4.783 |
| V13 |
3.801 |
4.944 |
| V23 |
3.125 |
3.817 |
| V52 |
2.836 |
3.406 |
| V46 |
4.518 |
4.78 |
| V14 |
3.045 |
3.032 |
| V51 |
2.887 |
3.815 |
| V20 |
3.484 |
4.565 |
| V34 |
3.331 |
2.566 |
| V1 |
3.169 |
2.694 |
| V43 |
3.576 |
3.787 |
- Accuracy: 0.8125
- tAUC: 0.8107
bootstrap: