Raven Shan
Introduction
For this assignment, I will be utilizing a subset of a life expectancy dataset from Gapminder.org, which can be retrieved at this link. The dataset contains 1704 observations of 6 variables. I will be exploring life expectancy trends between the years 1952 and 2007. The overall objective of this assignment is to use figures generated by the GGplot2 package to tell an interesting story. This assignment seeks to answer three fundamental research questions. The first set of graphs will examine how life expectancy has changed over the years. Has it increased or decreased over time? Secondly, how has life expectancy changed across different continents? Is it steadily increasing for some continents and not others? Finally, I will explore the relationship between GDP per capita and life expectancy across each continent. For this assignment, I decided to primarily use geom_smooth() for each figure as I think it best fits the data. A boxplot or bar chart, for example, does not convey progression over time as effectively, in my opinion.
Data and Variables
The final variables used in this analysis are as follows:
- lifeExp: Life expectancy will serve as the dependent variable in this analysis. This measures life expectancy at birth (in years).
- Year: The years in this dataset range from 1950 to 2007 (in increments of 5).
- gdpPercap: This variable measures per capita GDP of a country in a particular year.
- country: This variable contains each country.
- continent: The continents in this dataset consist of Asia, Europe, Africa, Americas (Oceania was not included in the final dataset as it contained only 2 countries).
Observations: 1,680
Variables: 5
$ year <int> 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, ...
$ continent <chr> "Asia", "Asia", "Asia", "Asia", "Asia", "Asia", "Asia", "Asi...
$ lifeExp <dbl> 28.801, 30.332, 31.997, 34.020, 36.088, 38.438, 39.854, 40.8...
$ gdpPercap <dbl> 779.4453, 820.8530, 853.1007, 836.1971, 739.9811, 786.1134, ...
$ country <chr> "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", ...
Results
Comparing Life Expectancy in the US with Overall Life Expectancy
Next, I used the grid.arrange() function from the gridExtra package, which allowed me to display each graph side by side in order to compare them more effectively.
library(gridExtra)
grid.arrange(g2,g1, ncol=2)

LS0tDQp0aXRsZTogIlNvYyBIVyAjOSAtIERhdGEgVmlzdWFsaXphdGlvbiB1c2luZyBHR3Bsb3QyIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCipSYXZlbiBTaGFuKg0KDQotLS0NCg0KIyNJbnRyb2R1Y3Rpb24gDQoNCkZvciB0aGlzIGFzc2lnbm1lbnQsIEkgd2lsbCBiZSB1dGlsaXppbmcgYSBzdWJzZXQgb2YgYSBsaWZlIGV4cGVjdGFuY3kgZGF0YXNldCBmcm9tIEdhcG1pbmRlci5vcmcsIHdoaWNoIGNhbiBiZSByZXRyaWV2ZWQgYXQgdGhpcyBbbGlua10od3d3LnN0YXQudWJjLmNhL35qZW5ueS9ub3RPY3RvL1NUQVQ1NDVBL2V4YW1wbGVzL2dhcG1pbmRlci9kYXRhL2dhcG1pbmRlckRhdGFGaXZlWWVhci50eHQpLiBUaGUgZGF0YXNldCBjb250YWlucyAxNzA0IG9ic2VydmF0aW9ucyBvZiA2IHZhcmlhYmxlcy4gSSB3aWxsIGJlIGV4cGxvcmluZyBsaWZlIGV4cGVjdGFuY3kgdHJlbmRzIGJldHdlZW4gdGhlIHllYXJzIDE5NTIgYW5kIDIwMDcuIFRoZSBvdmVyYWxsIG9iamVjdGl2ZSBvZiB0aGlzIGFzc2lnbm1lbnQgaXMgdG8gdXNlIGZpZ3VyZXMgZ2VuZXJhdGVkIGJ5IHRoZSAqR0dwbG90MiogcGFja2FnZSB0byB0ZWxsIGFuIGludGVyZXN0aW5nIHN0b3J5LiBUaGlzIGFzc2lnbm1lbnQgc2Vla3MgdG8gYW5zd2VyIHRocmVlIGZ1bmRhbWVudGFsIHJlc2VhcmNoIHF1ZXN0aW9ucy4gVGhlIGZpcnN0IHNldCBvZiBncmFwaHMgd2lsbCBleGFtaW5lIGhvdyBsaWZlIGV4cGVjdGFuY3kgaGFzIGNoYW5nZWQgb3ZlciB0aGUgeWVhcnMuIEhhcyBpdCBpbmNyZWFzZWQgb3IgZGVjcmVhc2VkIG92ZXIgdGltZT8gU2Vjb25kbHksIGhvdyBoYXMgbGlmZSBleHBlY3RhbmN5IGNoYW5nZWQgYWNyb3NzIGRpZmZlcmVudCBjb250aW5lbnRzPyBJcyBpdCBzdGVhZGlseSBpbmNyZWFzaW5nIGZvciBzb21lIGNvbnRpbmVudHMgYW5kIG5vdCBvdGhlcnM/IEZpbmFsbHksIEkgd2lsbCBleHBsb3JlIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBHRFAgcGVyIGNhcGl0YSBhbmQgbGlmZSBleHBlY3RhbmN5IGFjcm9zcyBlYWNoIGNvbnRpbmVudC4gRm9yIHRoaXMgYXNzaWdubWVudCwgSSBkZWNpZGVkIHRvIHByaW1hcmlseSB1c2UgZ2VvbV9zbW9vdGgoKSBmb3IgZWFjaCBmaWd1cmUgYXMgSSB0aGluayBpdCBiZXN0IGZpdHMgdGhlIGRhdGEuIEEgYm94cGxvdCBvciBiYXIgY2hhcnQsIGZvciBleGFtcGxlLCBkb2VzIG5vdCBjb252ZXkgcHJvZ3Jlc3Npb24gb3ZlciB0aW1lIGFzIGVmZmVjdGl2ZWx5LCBpbiBteSBvcGluaW9uLiANCg0KYGBge3IsIGVjaG89RkFMU0V9DQpsaWJyYXJ5KGRhdGEudGFibGUpDQpsaWZlX2V4cDIgPC0gZnJlYWQgKCdodHRwczovL3d3dy5zdGF0LnViYy5jYS9+amVubnkvbm90T2N0by9TVEFUNTQ1QS9leGFtcGxlcy9nYXBtaW5kZXIvZGF0YS9nYXBtaW5kZXJEYXRhRml2ZVllYXIudHh0JykNCmBgYA0KDQpgYGB7ciwgZWNobz1GQUxTRX0NCmxpYnJhcnkoZ2dwbG90MikNCm9wdGlvbnMoZHBseXIuc2hvd19wcm9ncmVzcyA9IEZBTFNFKQ0KYGBgDQoNCi0tLQ0KDQojI0RhdGEgYW5kIFZhcmlhYmxlcyANCg0KYGBge3IsIGVjaG89RkFMU0V9DQpsaWJyYXJ5KGRwbHlyKQ0KbGlmZV9leHAgPC0gZHBseXI6OnNlbGVjdChsaWZlX2V4cDIsIHllYXIsIGNvbnRpbmVudCwgbGlmZUV4cCwgZ2RwUGVyY2FwLCBjb3VudHJ5KQ0KYGBgDQoNCmBgYHtyLCBlY2hvPUZBTFNFfQ0KbGlicmFyeShwbHlyKQ0KbGlmZV9leHAgPC0gZHJvcGxldmVscyhzdWJzZXQobGlmZV9leHAsIGNvbnRpbmVudCE9Ik9jZWFuaWEiKSkNCmBgYA0KDQpUaGUgZmluYWwgdmFyaWFibGVzIHVzZWQgaW4gdGhpcyBhbmFseXNpcyBhcmUgYXMgZm9sbG93czoNCg0KKiAqKmxpZmVFeHAqKjogTGlmZSBleHBlY3RhbmN5IHdpbGwgc2VydmUgYXMgdGhlIGRlcGVuZGVudCB2YXJpYWJsZSBpbiB0aGlzIGFuYWx5c2lzLiBUaGlzIG1lYXN1cmVzIGxpZmUgZXhwZWN0YW5jeSBhdCBiaXJ0aCAoaW4geWVhcnMpLg0KKiAqKlllYXIqKjogVGhlIHllYXJzIGluIHRoaXMgZGF0YXNldCByYW5nZSBmcm9tIDE5NTAgdG8gMjAwNyAoaW4gaW5jcmVtZW50cyBvZiA1KS4gDQoqICoqZ2RwUGVyY2FwKio6IFRoaXMgdmFyaWFibGUgbWVhc3VyZXMgcGVyIGNhcGl0YSBHRFAgb2YgYSBjb3VudHJ5IGluIGEgcGFydGljdWxhciB5ZWFyLg0KKiAqKmNvdW50cnkqKjogVGhpcyB2YXJpYWJsZSBjb250YWlucyBlYWNoIGNvdW50cnkuDQoqICoqY29udGluZW50Kio6IFRoZSBjb250aW5lbnRzIGluIHRoaXMgZGF0YXNldCBjb25zaXN0IG9mIEFzaWEsIEV1cm9wZSwgQWZyaWNhLCBBbWVyaWNhcyAoT2NlYW5pYSB3YXMgbm90IGluY2x1ZGVkIGluIHRoZSBmaW5hbCBkYXRhc2V0IGFzIGl0IGNvbnRhaW5lZCBvbmx5IDIgY291bnRyaWVzKS4NCg0KYGBge3IsIGVjaG89RkFMU0V9DQpkcGx5cjo6Z2xpbXBzZShsaWZlX2V4cCkNCmBgYA0KDQotLS0NCg0KIyNSZXN1bHRzDQoNCiMjRmlndXJlIDEuIExpZmUgRXhwZWN0YW5jeSBPdmVyIFRpbWUNCg0KQmVsb3csIEkgc3RhcnQgb2ZmIGJ5IGV4YW1pbmluZyBsaWZlIGV4cGVjdGFuY3kgb3ZlciB0aGUgeWVhcnMgd2l0aCBhIHNpbXBsZSBmaWd1cmUgdXNpbmcgZ2VvbV9wb2ludCBhbmQgZ2VvbV9zbW9vdGguIEZpcnN0LCBJIGNyZWF0ZSB0aGUgZ2dwbG90IG9iamVjdCBjb250YWluaW5nIHRoZSBkYXRhIGFuZCB0aGUgYWVzdGhldGljIG1hcHBpbmcsIHdoaWNoIHdpbGwgYWN0IGFzIHRoZSBiYXNlIG9mIHRoZSBmaWd1cmUuIFRoZW4gSSBhZGQgdGhlIHBsb3R0aW5nIGxheWVycyBhbmQgc3BlY2lmeSB0aGUgY29sb3IgYW5kIHNpemUgdG8gZ2VuZXJhdGUgZmlndXJlIDEuIA0KYGBge3IgZmlnLndpZHRoPTl9DQpnIDwtIGdncGxvdChsaWZlX2V4cCwgYWVzKHggPSB5ZWFyLCB5ID0gbGlmZUV4cCkpDQpnMSA8LSBnICsgZ2VvbV9zbW9vdGgoY29sb3I9ImJsdWUiLCBzaXplPTEuNSkgKyBnZW9tX3BvaW50KGFscGhhPS4zKSArDQogIHRoZW1lX2NsYXNzaWMoKSArDQogIGdndGl0bGUoIk92ZXJhbGwgTGlmZSBFeHBlY3RhbmN5IG92ZXIgVGltZSIpDQpnMQ0KYGBgDQoNCi0tLQ0KDQojI0ZpZ3VyZSAyLiBMaWZlIEV4cGVjdGFuY3kgb3ZlciBUaW1lIGluIHRoZSBVbml0ZWQgU3RhdGVzDQoNCkluIHRoZSBmb2xsb3dpbmcgZmlndXJlLCBJIGFtIGV4YW1pbmluZyBsaWZlIGV4cGVjdGFuY3kgb3ZlciB0aW1lIGluIHRoZSBVbml0ZWQgU3RhdGVzIHVzaW5nIGEgbm9uLXBhcmFtZXRyaWMgc21vb3RoaW5nIGxpbmUgdmlhIGdlb21fc21vb3RoKCkuIA0KDQpgYGB7ciwgZWNobz1GQUxTRX0NClVTZGF0YSA8LSBmaWx0ZXIobGlmZV9leHAsIGNvdW50cnk9PSJVbml0ZWQgU3RhdGVzIikNCmBgYA0KDQpgYGB7ciBmaWcud2lkdGg9OX0NCmcyIDwtIGdncGxvdChVU2RhdGEsIGFlcyh4ID0geWVhciwgeSA9IGxpZmVFeHApKSsNCiAgZ2VvbV9zbW9vdGgoY29sb3I9InJlZCIsIHNpemU9MS41KSArIGdlb21fcG9pbnQoY29sb3I9ImJsdWUiKSArDQogIHRoZW1lX2NsYXNzaWMoKSArDQogIGdndGl0bGUoIkxpZmUgRXhwZWN0YW5jeSBpbiB0aGUgVVMgb3ZlciBUaW1lIikNCmcyDQpgYGANCg0KIyNDb21wYXJpbmcgTGlmZSBFeHBlY3RhbmN5IGluIHRoZSBVUyB3aXRoIE92ZXJhbGwgTGlmZSBFeHBlY3RhbmN5IA0KDQpOZXh0LCBJIHVzZWQgdGhlIGdyaWQuYXJyYW5nZSgpIGZ1bmN0aW9uIGZyb20gdGhlICpncmlkRXh0cmEqIHBhY2thZ2UsIHdoaWNoIGFsbG93ZWQgbWUgdG8gZGlzcGxheSBlYWNoIGdyYXBoIHNpZGUgYnkgc2lkZSBpbiBvcmRlciB0byBjb21wYXJlIHRoZW0gbW9yZSBlZmZlY3RpdmVseS4gIA0KDQpgYGB7ciBmaWcud2lkdGg9OX0NCmxpYnJhcnkoZ3JpZEV4dHJhKQ0KZ3JpZC5hcnJhbmdlKGcyLGcxLCBuY29sPTIpDQpgYGANCg0KLS0tDQoNCiMjRmlndXJlIDMuIExpZmUgRXhwZWN0YW5jeSBvdmVyIFRpbWUgYnkgQ29udGluZW50IA0KDQpUaGUgZm9sbG93aW5nIGZpZ3VyZSBpbmNvcnBvcmF0ZXMgY29udGluZW50cy4gSSBhbSBleGFtaW5pbmcgdGhlIGxpZmUgZXhwZWN0YW5jeSBvdmVyIHRpbWUgYWNyb3NzIGVhY2ggY29udGluZW50IHVzaW5nIGEgc2NhdHRlcnBsb3Qgb3ZlcmxhaWQgd2l0aCBhIHNtb290aGVkIGxpbmUuIEkgYXNzaWduZWQgYW4gYWxwaGEgdmFsdWUgb2YgLjMgdG8gYWRqdXN0IHRoZSBvcGFjaXR5IG9mIHRoZSBwb2ludHMuDQoNCmBgYHtyIGZpZy53aWR0aD0xMH0NCmczIDwtIGdncGxvdChsaWZlX2V4cCwgYWVzKHggPSB5ZWFyLCB5ID0gbGlmZUV4cCxjb2xvcj1jb250aW5lbnQpKSANCmczICsgZ2VvbV9wb2ludChhbHBoYT0uMykgKyBnZW9tX3Ntb290aChzaXplPTEuNSkgKw0KICB0aGVtZV9jbGFzc2ljKCkgKw0KICBnZ3RpdGxlKCJMaWZlIEV4cGVjdGFuY3kgb3ZlciBUaW1lIGJ5IENvbnRpbmVudCIpDQpgYGANCg0KIyMjRmlndXJlIDNiLg0KDQpUaGlzIGZpZ3VyZSBkb2VzIG5vdCBwcmVzZW50IGFueSBuZXcgaW5mb3JtYXRpb24gYXMgdGhlIHByZXZpb3VzIG9uZSwgaG93ZXZlciwgaXQgZG9lcyBnaXZlIHZpZXdlcnMgYSBkaWZmZXJlbnQgdmlzdWFsIHJlcHJlc2VudGF0aW9uIG9mIHRoZSBkYXRhLiBJbiB0aGlzIGZpZ3VyZSwgSSB1c2UgdGhlIGdlb21fZGVuc2l0eSgpIGZ1bmN0aW9uIHRvIGRpc3BsYXkgdGhlIGxpZmUgZXhwZWN0YW5jeSBpbiBlYWNoIGNvbnRpbmVudC4gSW4gYWRkaXRpb24sIEkgdXRpbGl6ZWQgdGhlIHRoZSBmYWNldF93cmFwKCkgZnVuY3Rpb24gYW5kIHNwZWNpZmllZCB0aGUgY29udGluZW50IHZhcmlhYmxlIHRvIGRpc3BsYXkgZWFjaCBjb250aW5lbnQgaW4gaXRzIG93biBkaXN0aW5jdCBzZWN0aW9uLg0KDQpgYGB7ciBmaWcud2lkdGg9MTB9DQpnM2IgPC0gZ2dwbG90KGxpZmVfZXhwLCBhZXMoeD1saWZlRXhwKSkNCmczYiArIGdlb21fZGVuc2l0eSAoYWVzKGZpbGw9Y29udGluZW50KSwgc2l6ZT0xKSArIGZhY2V0X3dyYXAofmNvbnRpbmVudCkrDQogIHRoZW1lX2NsYXNzaWMoKSArDQogIGdndGl0bGUoIkxpZmUgRXhwZWN0YW5jeSBBY3Jvc3MgQ29udGluZW50cyIpDQpgYGANCg0KLS0tDQoNCiMjRmlndXJlIDQuIFJlbGF0aW9uc2hpcCBiZXR3ZWVuIEdEUCBwZXIgQ2FwaXRhIGFuZCBMaWZlIEV4cGVjdGFuY3kgYnkgQ29udGluZW50DQoNClRoZSBsYXN0IGZpZ3VyZSBpbnRyb2R1Y2VzIGEgbmV3IGluZGVwZW5kZW50IHZhcmlhYmxlLCBHRFAgcGVyIGNhcGl0YS4gSXQgZXhwbG9yZXMgdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIEdEUCBwZXIgY2FwaXRhICgqZ3JvdXBlZCBieSBjb250aW5lbnRzIHJhdGhlciB0aGFuIGNvdW50cmllcyopIGFuZCBsaWZlIGV4cGVjdGFuY3kgZm9yIGVhY2ggY29udGluZW50LiBJbiBhZGRpdGlvbiwgYWZ0ZXIgdHJpYWwgYW5kIGVycm9yLCBJIGRlY2lkZWQgdG8gbG9nIHRyYW5zZm9ybSB0aGUgZ2RwUGVyY2FwIHZhcmlhYmxlIHRvIGNyZWF0ZSBhbiBpbnRlcnByZXRhYmxlIGdyYXBoLiBCZWZvcmUgbG9nIHRyYW5zZm9ybWluZyB0aGUgdmFyaWFibGUsIHRoZSBncmFwaCB3YXMgdW5pbnRlcnByZXRhYmxlIGFuZCB2aXN1YWxseSB1bmFwcGVhbGluZy4gIA0KDQpgYGB7ciBmaWcud2lkdGg9MTB9DQpnLmcgPC1nZ3Bsb3QobGlmZV9leHAsIGFlcyh4ID0gbG9nMTAoZ2RwUGVyY2FwKSwgeSA9IGxpZmVFeHAsIGNvbG9yPWNvbnRpbmVudCkpDQpnNCA8LSBnLmcgKyBnZW9tX3BvaW50KHNpemU9MikgKw0KICB0aGVtZV9jbGFzc2ljKCkgKw0KICBnZ3RpdGxlKCJMaWZlIEV4cGVjdGFuY3kgYW5kIEdEUC9jYXBpdGEgYnkgQ29udGluZW50IikNCmc0DQpgYGANCg0K