Activate Libraries to use

library(readr)
## Warning: package 'readr' was built under R version 3.4.4
library(rpart)
## Warning: package 'rpart' was built under R version 3.4.4
library(caTools)
## Warning: package 'caTools' was built under R version 3.4.4
set.seed(123)

Open the Titanic Dataset

dataset <-  read_csv("c:\\Users\\Wilson\\Downloads\\KEC-Titanic-train.csv")
## Parsed with column specification:
## cols(
##   PassengerId = col_integer(),
##   Survived = col_integer(),
##   Pclass = col_integer(),
##   Name = col_character(),
##   Sex = col_character(),
##   Age = col_double(),
##   SibSp = col_integer(),
##   Parch = col_integer(),
##   Ticket = col_character(),
##   Fare = col_double(),
##   Cabin = col_character(),
##   Embarked = col_character()
## )
# Select the relevant fields (Passenger Class, Sex, Age, Siblings, Parents, Fare)
df <-  dataset[,c(2,3,5:8,10)]
head(df)
## # A tibble: 6 x 7
##   Survived Pclass    Sex   Age SibSp Parch    Fare
##      <int>  <int>  <chr> <dbl> <int> <int>   <dbl>
## 1        0      3   male    22     1     0  7.2500
## 2        1      1 female    38     1     0 71.2833
## 3        1      3 female    26     0     0  7.9250
## 4        1      1 female    35     1     0 53.1000
## 5        0      3   male    35     0     0  8.0500
## 6        0      3   male    NA     0     0  8.4583

Data Preparation

# Factorize Survived Field
df$Survived = factor(df$Survived, levels = c(0, 1))

# Feature Scaling  fare and age
# df[7] <-  scale(df[7])
# df[4] <-  scale(df[4])

Classifying

 classifier = rpart(formula = Survived ~., data= df)
 plot(classifier)
 text(classifier, cex = .6)