library(tidyverse)
ss06hidData <- read_csv("./data/ss06hid.csv")
sso6hidData_part <- ss06hidData[, c("ACR", "AGS")]
sso6hidData_part <- sso6hidData_part %>%
mutate(agricultureLogical = ifelse(ACR == 3 & AGS == 6, TRUE, FALSE))
head(which(sso6hidData_part$agricultureLogical), 3)
## [1] 125 238 262
library(jpeg)
img <- readJPEG("./img/jeff.jpg", native = TRUE)
quantile(img, probs = c(0.3, 0.8))
## 30% 80%
## -15259150 -10575416
GDPdata <- read_csv("./data/GDP.csv", skip = 4)
GDPdata <- na.omit(GDPdata[, 1:2])
names(GDPdata) <- c("CountryCode","GDPrank")
EDSTATS_Country_data <- read_csv("./data/EDSTATS_Country.csv")
innerJoinData <- inner_join(EDSTATS_Country_data, GDPdata, by ="CountryCode")
innerJoinData %>%
arrange(desc(GDPrank)) %>%
summarise(matches = n(),
the_13rd_country = .$`Long Name`[which(GDPrank == 13)]
)
## # A tibble: 1 x 2
## matches the_13rd_country
## <int> <chr>
## 1 189 Kingdom of Spain
Data <- innerJoinData %>%
group_by(`Income Group`) %>%
mutate(GDPrank = as.numeric(GDPrank)) %>%
summarise(meanValue = mean(GDPrank))
Data[which(Data$`Income Group` %in% c( "High income: OECD", "High income: nonOECD")), "meanValue"]
## # A tibble: 2 x 1
## meanValue
## <dbl>
## 1 91.9
## 2 33.0
library(Hmisc)
innerJoinData <- transform(innerJoinData, GDPrank = as.numeric(GDPrank))
innerJoinData <- innerJoinData %>%
mutate(five_cut_groups = cut2(GDPrank, g = 5))
with(innerJoinData, {table(Income.Group, five_cut_groups)})
## five_cut_groups
## Income.Group [ 1, 39) [ 39, 77) [ 77,115) [115,154) [154,190]
## High income: nonOECD 4 5 8 5 1
## High income: OECD 18 10 1 1 0
## Low income 0 1 9 16 11
## Lower middle income 5 13 12 8 16
## Upper middle income 11 9 8 8 9