Ex.4 Find the fundamental matrix N for Example 11.10.
matrix11.10 <- matrix(c(1,0,0,0.5,0.5,0,0,1,0),byrow = TRUE,nrow = 3)
matrix11.10
## [,1] [,2] [,3]
## [1,] 1.0 0.0 0
## [2,] 0.5 0.5 0
## [3,] 0.0 1.0 0
matrix.rewrite <- matrix11.10[c(2,1,3),]
matrix.rewrite
## [,1] [,2] [,3]
## [1,] 0.5 0.5 0
## [2,] 1.0 0.0 0
## [3,] 0.0 1.0 0
matrixQ <- matrix.rewrite[c(-1,-2),c(-2,-3)]
matrixQ
## [1] 0
matrixR <- matrix.rewrite[c(-2,-3),c(-3)]
matrixR
## [1] 0.5 0.5
N <- solve(diag(1)-matrixQ)
N
## [,1]
## [1,] 1
For an absorbing Markov chain \(P\), the matrix \(N = (I-Q)^{-1}\) is called the \(fundamental matrix\) for \(P\).