Data Preparation

library(knitr)
sports <- read.csv("https://raw.githubusercontent.com/fivethirtyeight/data/master/nfl-fandom/NFL_fandom_data-google_trends.csv",skip=1,header=TRUE, stringsAsFactors = FALSE )
## Data Cleanup- remove % symbol, convert cols to numeric
sports2 <- as_data_frame(lapply(sports, gsub, pattern='\\%', replacement=''))
sports_names <- colnames(sports2)[-1]
sports2[sports_names] <- sapply(sports2[sports_names],as.numeric)
sports_names
## get the means of sports categories
team_means <- lapply(sports2[sports_names],mean)
## get sd of categories
col_sd <- sapply(sports2[sports_names], sd, na.rm = TRUE)
col_sd

Research Question

Cases

Data Collection

Type of study

Data Source

If you collected the data, state self-collected. If not, provide a citation/link.

[https://github.com/fivethirtyeight/data/blob/master/nfl-fandom/NFL_fandom_data-google_trends.csv]

Response

What is the response variable, and what type is it (numerical/categorical)?

Explanatory

What is the explanatory variable, and what type is it (numerical/categorival)?

Relevant summary statistics

Provide summary statistics relevant to your research question. For example, if you’re comparing means across groups provide means, SDs, sample sizes of each group. This step requires the use of R, hence a code chunk is provided below. Insert more code chunks as needed.

paste("the means of column",sports_names,"is ",team_means," The sd of each column is ",col_sd)
[1] "the means of column NFL is  39.0966183574879  The sd of each column is  6.43264868397972"             
[2] "the means of column NBA is  22.8019323671498  The sd of each column is  5.5436832009321"              
[3] "the means of column MLB is  13.5942028985507  The sd of each column is  3.99022655723329"             
[4] "the means of column NHL is  5.09178743961353  The sd of each column is  3.6117768793827"              
[5] "the means of column NASCAR is  5.3719806763285  The sd of each column is  2.3006515412352"            
[6] "the means of column CBB is  4.75845410628019  The sd of each column is  3.7867440642748"              
[7] "the means of column CFB is  9.28019323671498  The sd of each column is  5.21840878561084"             
[8] "the means of column Trump.2016.Vote. is  54.5292270531401  The sd of each column is  12.2978147234567"

Generalizability

Several ideas for Approach

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCi0tLQ0KdGl0bGU6IERBVEEgNjA2IERhdGEgUHJvamVjdCBQcm9wb3NhbA0KYXV0aG9yOiBKdXN0aW4gSGVybWFuDQotLS0NCg0KIyMjIERhdGEgUHJlcGFyYXRpb24NCg0KYGBge3Igc2V0dXAsIGVjaG89VFJVRSwgcmVzdWx0cz0naGlkZScsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KGtuaXRyKQ0KDQpzcG9ydHMgPC0gcmVhZC5jc3YoImh0dHBzOi8vcmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbS9maXZldGhpcnR5ZWlnaHQvZGF0YS9tYXN0ZXIvbmZsLWZhbmRvbS9ORkxfZmFuZG9tX2RhdGEtZ29vZ2xlX3RyZW5kcy5jc3YiLHNraXA9MSxoZWFkZXI9VFJVRSwgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFICkNCg0KIyMgRGF0YSBDbGVhbnVwLSByZW1vdmUgJSBzeW1ib2wsIGNvbnZlcnQgY29scyB0byBudW1lcmljDQpzcG9ydHMyIDwtIGFzX2RhdGFfZnJhbWUobGFwcGx5KHNwb3J0cywgZ3N1YiwgcGF0dGVybj0nXFwlJywgcmVwbGFjZW1lbnQ9JycpKQ0Kc3BvcnRzX25hbWVzIDwtIGNvbG5hbWVzKHNwb3J0czIpWy0xXQ0Kc3BvcnRzMltzcG9ydHNfbmFtZXNdIDwtIHNhcHBseShzcG9ydHMyW3Nwb3J0c19uYW1lc10sYXMubnVtZXJpYykNCnNwb3J0c19uYW1lcw0KIyMgZ2V0IHRoZSBtZWFucyBvZiBzcG9ydHMgY2F0ZWdvcmllcw0KdGVhbV9tZWFucyA8LSBsYXBwbHkoc3BvcnRzMltzcG9ydHNfbmFtZXNdLG1lYW4pDQojIyBnZXQgc2Qgb2YgY2F0ZWdvcmllcw0KY29sX3NkIDwtIHNhcHBseShzcG9ydHMyW3Nwb3J0c19uYW1lc10sIHNkLCBuYS5ybSA9IFRSVUUpDQpjb2xfc2QNCg0KDQoNCmBgYA0KDQoNCiMjIyBSZXNlYXJjaCBRdWVzdGlvbiANCg0KKyBIb3cgZG9lcyBHb29nbGUgc2VhcmNoIHJlc3VsdHMgZm9yIHRoZSBTZXZlbiBtYWpvciBzcG9ydHMgY29ycmVsYXRlIHRvIFRydW1wJ3MgMjAxNiB2b3RlIHBlcmNlbnRhZ2U/ICANCg0KIyMjIENhc2VzIA0KDQotIFRoZSB0b3ducyBhcmUgbGlzdGVkIGJ5IGRlc2lnbmF0ZWQgbWFya2V0IGFyZWEgKERNQSkNCi0gMjA3IGRpZmZlcmVudCBjYXNlcw0KDQoNCiMjIyBEYXRhIENvbGxlY3Rpb24gDQoNCisgIkdvb2dsZSBUcmVuZHMgZGF0YSB3YXMgZGVyaXZlZCBmcm9tIGNvbXBhcmluZyA1LXllYXIgc2VhcmNoIHRyYWZmaWMgZm9yIHRoZSA3IHNwb3J0cyBsZWFndWVzIHdlIGFuYWx5emVkOiIoZnJvbSBnaXRodWIgaW5mbykNCg0KDQojIyMgVHlwZSBvZiBzdHVkeSANCg0KKyBPYnNlcnZhdGlvbmFsDQoNCg0KIyMjIERhdGEgU291cmNlIA0KDQoqKklmIHlvdSBjb2xsZWN0ZWQgdGhlIGRhdGEsIHN0YXRlIHNlbGYtY29sbGVjdGVkLiBJZiBub3QsIHByb3ZpZGUgYSBjaXRhdGlvbi9saW5rLioqDQoNCltodHRwczovL2dpdGh1Yi5jb20vZml2ZXRoaXJ0eWVpZ2h0L2RhdGEvYmxvYi9tYXN0ZXIvbmZsLWZhbmRvbS9ORkxfZmFuZG9tX2RhdGEtZ29vZ2xlX3RyZW5kcy5jc3ZdDQoNCg0KIyMjIFJlc3BvbnNlIA0KDQoqKldoYXQgaXMgdGhlIHJlc3BvbnNlIHZhcmlhYmxlLCBhbmQgd2hhdCB0eXBlIGlzIGl0IChudW1lcmljYWwvY2F0ZWdvcmljYWwpPyoqDQoNCisgRGlzY3JldGUgbnVtZXJpY2FsLSBUcnVtcCAyMDE2IHZvdGUgcGVyY2VudGFnZQ0KDQojIyMgRXhwbGFuYXRvcnkgDQoNCioqV2hhdCBpcyB0aGUgZXhwbGFuYXRvcnkgdmFyaWFibGUsIGFuZCB3aGF0IHR5cGUgaXMgaXQgKG51bWVyaWNhbC9jYXRlZ29yaXZhbCk/KioNCg0KKyBEaXNjcmV0ZSBudW1lcmljYWwtICBQY3QuIG9mIG1ham9yIHNwb3J0cyBzZWFyY2hlcw0KICAgICsgQ3JlYXRlIGNhdGVnb3JpY2FsIGNsdXN0ZXJzIHdpdGhpbiB0aGlzIGRhdGEgYmFzZWQgb24gICRcc2lnbWEkIHRvIHRlc3QgaWYgdGhlcmUgaXMgYSBkaWZmZXJlbmNlIGJldHdlZW4gKGhpZ2hlciwgYXZlcmFnZSwgYW5kIGxvd2VyIHNwb3J0IHNwZWNpZmljIHNlYXJjaGVzKSBhbmQgIFRydW1wJ3MgYXZlcmFnZSAyMDE2IHZvdGUgDQoNCg0KIyMjIFJlbGV2YW50IHN1bW1hcnkgc3RhdGlzdGljcyANCg0KKipQcm92aWRlIHN1bW1hcnkgc3RhdGlzdGljcyByZWxldmFudCB0byB5b3VyIHJlc2VhcmNoIHF1ZXN0aW9uLiBGb3IgZXhhbXBsZSwgaWYgeW914oCZcmUgY29tcGFyaW5nIG1lYW5zIGFjcm9zcyBncm91cHMgcHJvdmlkZSBtZWFucywgU0RzLCBzYW1wbGUgc2l6ZXMgb2YgZWFjaCBncm91cC4gVGhpcyBzdGVwIHJlcXVpcmVzIHRoZSB1c2Ugb2YgUiwgaGVuY2UgYSBjb2RlIGNodW5rIGlzIHByb3ZpZGVkIGJlbG93LiBJbnNlcnQgbW9yZSBjb2RlIGNodW5rcyBhcyBuZWVkZWQuKioNCg0KYGBge3J9IA0KcGFzdGUoInRoZSBtZWFucyBvZiBjb2x1bW4iLHNwb3J0c19uYW1lcywiaXMgIix0ZWFtX21lYW5zLCIgVGhlIHNkIG9mIGVhY2ggY29sdW1uIGlzICIsY29sX3NkKQ0KYGBgDQojIyBHZW5lcmFsaXphYmlsaXR5DQorIFdpdGggYW4gYXZlcmFnZSBUcnVtcCB2b3RlIHBlcmNlbnRhZ2Ugb2YgNTQuNSwgb3VyIHNhbXBsZSBpcyBjbGVhcmx5IGJpYXNlZChUcnVtcCBsb3N0IHBvcHVsYXIgdm90ZSkNCiAgICArIFRoaXMgd2lsbCBiZSBzaG93biBzdGF0aXN0aWNhbGx5DQorIEFzIGFuIG9ic2VydmF0aW9uYWwgU3R1ZHkgdGhpcyB3aWxsIG5vdCBwcm92ZSB0aGVyZSBpcyBhIGNhdXNhdGlvbiBiZXR3ZWVuICBzcG9ydHMgc2VhcmNoZXMgYW5kIFRydW1wJ3MgMjAxNiB2b3RlIHBlcmNlbnRhZ2UgIA0KDQojIyBTZXZlcmFsIGlkZWFzIGZvciBBcHByb2FjaA0KKyBVc2UgbGluZWFyIHJlZ3Jlc3Npb24gdG8gYnVpbGQgYSAgcHJlZGljdGl2ZSBtb2RlbA0KKyBMb29rIGF0IGVhY2ggc3BvcnQgaW5kaXZpZHVhbGx5LiAgIENhdGVnb3JpemUgZWFjaCBzcG9ydCBpbnRvIGNsdXN0ZXJzIGJhc2VkIG9uICRcc2lnbWEkLiAgSSB3aWxsIGF0dGVtcHQgdG8gY3JlYXRlIGVxdWFsIGNhdGVnb3JpZXMuIEkuRS4gKDwtMS41ICRcc2lnbWEkLC0xICRcc2lnbWEkLC0uNSAkXHNpZ21hJCwgLjUgJFxzaWdtYSQsMSAkXHNpZ21hJCwgPjEuNSAkXHNpZ21hJCkgSSB3aWxsIHVzZSB0aGVzZSBjYXRlZ29yaWVzIHRvIGRldGVybWluZSBpZiB0aGVyZSBhcmUgc3RhdGlzdGljYWxseSBzaWduaWZpY2FudCBkaWZmZXJlbmNlcyBiZXR3ZWVuIGhvdyB0aGVzZSBjbHVzdGVycyB2b3RlZCBmb3IgVHJ1bXAgaW4gMjAxNi4NCisgTXkgZXhwbGFuYXRvcnkgdmFyaWFibGVzIGFyZSBjb21wbGV0ZWx5IGRlcGVuZGVudCBvbiBlYWNoIG90aGVyIGFzIHRoZXkgYWRkIHVwIHRvIDEwMCUgb3ZlcmFsbC4gQW55IGFuYWx5c2lzIGludm9sdmluZyBob3cgbXVsdGlwbGUgZXhwbGFuYXRvcnkgdmFyaWFibGVzIGVmZmVjdCBUcnVtcHMgdm90aW5nIHBlcmNlbnRhZ2UsIHdpbGwgaGF2ZSB0byBmaW5kIGEgd2F5IHRvIGFjY291bnQgZm9yIHRoaXMgICAgIA0KDQogDQo=