Random walk with Drift
\(x_t\)=\(\delta\)+\(x_t-_1\) +\(\omega_t\) for t=1,2,3,….. with the condition \(x_0\) =0 and \(\omega_t\) is white noise. The constant \(\delta\) is called drift.
set.seed(12)
#White noise
w=rnorm(100,0,1)
#Random walk without drift
x=cumsum(w) #cummulative sum
#Random walk with drift 0.5
wd=w+0.5
xd=cumsum(wd)
plot.ts(xd,main="random Walk",col="red",ylim=c(-10,60))
lines(x)
lines(.5*(1:200), lty="dashed")

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpSYW5kb20gd2FsayB3aXRoIERyaWZ0DQoNCiR4X3QkPSRcZGVsdGEkKyR4X3QtXzEkICskXG9tZWdhX3QkDQpmb3IgdD0xLDIsMywuLi4uLiB3aXRoIHRoZSBjb25kaXRpb24gJHhfMCQgPTAgYW5kICRcb21lZ2FfdCQgaXMgd2hpdGUgbm9pc2UuDQpUaGUgY29uc3RhbnQgJFxkZWx0YSQgaXMgY2FsbGVkIGRyaWZ0Lg0KDQpgYGB7cn0NCnNldC5zZWVkKDEyKQ0KI1doaXRlIG5vaXNlIA0Kdz1ybm9ybSgxMDAsMCwxKQ0KDQojUmFuZG9tIHdhbGsgd2l0aG91dCBkcmlmdA0KeD1jdW1zdW0odykgICNjdW1tdWxhdGl2ZSBzdW0NCg0KI1JhbmRvbSB3YWxrIHdpdGggZHJpZnQgMC41DQp3ZD13KzAuNQ0KeGQ9Y3Vtc3VtKHdkKQ0KDQpwbG90LnRzKHhkLG1haW49InJhbmRvbSBXYWxrIixjb2w9InJlZCIseWxpbT1jKC0xMCw2MCkpDQpsaW5lcyh4KQ0KbGluZXMoLjUqKDE6MjAwKSwgbHR5PSJkYXNoZWQiKSANCg0KDQpgYGANCg0KDQo=