names(births2011)
## [1] "age_m" "marital_s" "number_p" "prenatal_care"
## [5] "afiliation" "educ_m" "sex_birth" "wgt_birth"
## [9] "low_wgt" "place_birth" "state_birth" "mpio_birth"
## [13] "hom_t" "hom_m" "hom_f"
births2011$wgt<-as.numeric(scale(births2011$wgt_birth, center = T, scale = T))
fit.anov<-lm(wgt~as.factor(mpio_birth), births2011)
anova(fit.anov)
## Analysis of Variance Table
##
## Response: wgt
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(mpio_birth) 60 2594 43.231 43.901 < 2.2e-16 ***
## Residuals 166139 163605 0.985
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#install.packages("lmerTest")
#install.packages("arm")
library(lme4)
## Loading required package: Matrix
library(lmerTest)
## Warning: package 'lmerTest' was built under R version 3.4.4
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
## lmer
## The following object is masked from 'package:stats':
##
## step
library(arm)
## Warning: package 'arm' was built under R version 3.4.4
## Loading required package: MASS
##
## arm (Version 1.9-3, built: 2016-11-21)
## Working directory is C:/Users/gpe637/Desktop/UTSA/Spring 2018/Statistics II
fitb<-lmer(wgt~(1|mpio_birth), data=births2011)
arm::display(fitb, detail=T)
## lme4::lmer(formula = wgt ~ (1 | mpio_birth), data = births2011)
## coef.est coef.se t value
## (Intercept) -0.03 0.04 -0.90
##
## Error terms:
## Groups Name Std.Dev.
## mpio_birth (Intercept) 0.27
## Residual 0.99
## ---
## number of obs: 166200, groups: mpio_birth, 61
## AIC = 469315, DIC = 469299.4
## deviance = 469304.2
# Why it isn't 1.00 in Residual?
births2011$predwgt<-sd(births2011$wgt)*(fitted(fitb))+mean(births2011$wgt)
head(ranef(fitb))
## $mpio_birth
## (Intercept)
## ACUÑA 0.1508974275
## AHUMADA -0.0115004756
## ALLENDE 0.0522772505
## ASCENSION 0.1845706163
## BALLEZA 0.0968194961
## BATOPILAS 0.0145441015
## BOCOYNA 0.0126240363
## BUENAVENTURA -0.0654630092
## CAJEME 0.0720117512
## CAMARGO 0.1096879766
## CHIHUAHUA -0.0969877125
## CIUDAD MADERO -0.6143897040
## CUATRO CIENEGAS 0.1781235106
## CUAUHTEMOC -0.0715907629
## DELICIAS 0.0296005360
## ENSENADA 0.1010102733
## FRANCISCO I. MADERO 0.1096115512
## GALEANA 0.2492437044
## GENERAL CEPEDA -0.1570634689
## GOMEZ FARIAS 0.0086705666
## GUACHOCHI 0.0081993279
## GUADALUPE -0.1362075830
## GUADALUPE Y CALVO -0.1294417997
## GUAZAPARES -0.0720198610
## GUERRERO -0.1957554567
## HERMOSILLO 0.0899898782
## HIDALGO DEL PARRAL 0.0965636598
## JANOS 0.2063999991
## JIMENEZ 0.1134783055
## JUAREZ -0.0084680164
## MATAMOROS 0.0232194580
## MEXICALI 0.1475078634
## MONCLOVA 0.0493076183
## MONTERREY -1.3572165253
## MUZQUIZ -0.0280908402
## NAMIQUIPA -0.0434876575
## NAVOJOA 0.2069986343
## NOGALES -0.0008083953
## NUEVO CASAS GRANDES 0.0203026263
## NUEVO LAREDO 0.1433812228
## OJINAGA 0.1195027981
## PARRAS 0.1153977682
## PIEDRAS NEGRAS -0.0508501914
## PLAYAS DE ROSARITO 0.2192883753
## RAMOS ARIZPE -0.1535974889
## RIVA PALACIO 0.3553335009
## SABINAS 0.0588453694
## SALTILLO -0.1391167168
## SAN BUENAVENTURA 0.0879938882
## SAN JUAN DE SABINAS 0.2142460114
## SAN LUIS RIO COLORADO 0.3391402641
## SAN NICOLAS DE LOS GARZA -0.0535602523
## SAN PEDRO 0.0966802899
## SAN PEDRO GARZA GARCIA -0.3240144926
## SAUCILLO -0.0499582779
## TAMPICO -0.4020023195
## TECATE 0.1833988798
## TIJUANA 0.1483976202
## TORREON 0.0179565777
## URIQUE 0.0194027871
## URUACHI -0.2890345147
mpiomeans<-aggregate(cbind(wgt, predwgt)~mpio_birth, births2011, mean)
head(mpiomeans, n =15)
## mpio_birth wgt predwgt
## 1 ACUÑA 0.118270834 0.117478903
## 2 AHUMADA -0.048016895 -0.044919000
## 3 ALLENDE 0.019503324 0.018858726
## 4 ASCENSION 0.176749463 0.151152092
## 5 BALLEZA 0.148162156 0.063400972
## 6 BATOPILAS -0.015236504 -0.018874423
## 7 BOCOYNA -0.020627037 -0.020794488
## 8 BUENAVENTURA -0.142546271 -0.098881534
## 9 CAJEME 0.061008552 0.038593227
## 10 CAMARGO 0.077885048 0.076269452
## 11 CHIHUAHUA -0.130497980 -0.130406237
## 12 CIUDAD MADERO -0.908594167 -0.647808228
## 13 CUATRO CIENEGAS 0.158339019 0.144704986
## 14 CUAUHTEMOC -0.105205298 -0.105009287
## 15 DELICIAS -0.003718891 -0.003817988
plot(predwgt~wgt, mpiomeans)
# Model with individual level predictors:
fitb2<-lmer(wgt~age_m+marital_s+prenatal_care+educ_m+(1|mpio_birth), data = births2011)
arm::display(fitb2, detail=T)
## lme4::lmer(formula = wgt ~ age_m + marital_s + prenatal_care +
## educ_m + (1 | mpio_birth), data = births2011)
## coef.est coef.se t value
## (Intercept) -0.41 0.04 -9.62
## age_m 0.01 0.00 19.71
## marital_sDIVORCIADA -0.13 0.05 -2.89
## marital_sSEPARADA -0.08 0.04 -2.11
## marital_sSOLTERA -0.05 0.01 -6.66
## marital_sUNIÓN LIBRE -0.01 0.01 -1.53
## marital_sVIUDA 0.09 0.06 1.51
## prenatal_careSI 0.19 0.02 12.15
## educ_mBACHILLERATO O PREPARATORIA INCOMPLETA -0.01 0.01 -1.11
## educ_mNINGUNA -0.04 0.02 -1.94
## educ_mPOSGRADO -0.19 0.04 -4.81
## educ_mPRIMARIA COMPLETA 0.01 0.01 0.74
## educ_mPRIMARIA INCOMPLETA -0.02 0.01 -1.60
## educ_mPROFESIONAL -0.07 0.01 -7.28
## educ_mSECUNDARIA COMPLETA 0.01 0.01 1.46
## educ_mSECUNDARIA INCOMPLETA -0.01 0.01 -1.22
##
## Error terms:
## Groups Name Std.Dev.
## mpio_birth (Intercept) 0.27
## Residual 0.99
## ---
## number of obs: 166200, groups: mpio_birth, 61
## AIC = 468670, DIC = 468412.1
## deviance = 468523.0
# Likedihood ratio test to see if the individual level variables are explaining anything about out ourcome. Spoiler alert: Yes.
anova(fitb, fitb2)
## refitting model(s) with ML (instead of REML)
## Data: births2011
## Models:
## object: wgt ~ (1 | mpio_birth)
## ..1: wgt ~ age_m + marital_s + prenatal_care + educ_m + (1 | mpio_birth)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## object 3 469310 469340 -234652 469304
## ..1 18 468559 468739 -234262 468523 781.12 15 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# There is variation in average birth weight across municipalities in the Northen Border States
rand(fitb2)
## Analysis of Random effects Table:
## Chi.sq Chi.DF p.value
## mpio_birth 2345 1 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Lets go for the intra-class correlation coefficient
ICC<-VarCorr(fitb)$mpio_birth[1]/( VarCorr(fitb)$mpio_birth[1]+attr(VarCorr(fitb), "sc"))
#About a 6.6% of difference between municipalities.
ICC*100
## [1] 6.615799
plot(NULL,ylim=c(-2, 2), xlim=c(0,1),
ylab="Intercept", xlab="")
title(main="Fixed Effect Model")
for (i in 1: length(fixcoef)[1]){
abline(a=fixcoef[i], b=0, lwd=1.5, col=4)
}
# Random intercepts
rancoefs1<-ranef(fitb2)$mpio_birth+fixef(fitb2)[1]
rancoefs1<-rancoefs1*sd(births2011$wgt)+mean(births2011$wgt)
summary(rancoefs1)
## (Intercept)
## Min. :-1.7889
## 1st Qu.:-0.4666
## Median :-0.3650
## Mean :-0.4069
## 3rd Qu.:-0.2889
## Max. :-0.0414
plot(NULL, ylim=c(-2, 2), xlim=c(0,1),
ylab="Intercept", xlab="Prenatal care")
title(main="Random Intercept Models")
for (i in 1: length(rancoefs1[,1])){
abline(a=rancoefs1[i,1], b=.19, lwd=1., col="red")
}
fitbhl<-lmer(wgt~age_m+marital_s+prenatal_care+educ_m+homz+(1|mpio_birth), data = births2011)
display(fitbhl, detail=T)
## lme4::lmer(formula = wgt ~ age_m + marital_s + prenatal_care +
## educ_m + homz + (1 | mpio_birth), data = births2011)
## coef.est coef.se t value
## (Intercept) -0.44 0.07 -6.61
## age_m 0.01 0.00 19.71
## marital_sDIVORCIADA -0.13 0.05 -2.89
## marital_sSEPARADA -0.08 0.04 -2.11
## marital_sSOLTERA -0.05 0.01 -6.66
## marital_sUNIÓN LIBRE -0.01 0.01 -1.53
## marital_sVIUDA 0.09 0.06 1.51
## prenatal_careSI 0.19 0.02 12.15
## educ_mBACHILLERATO O PREPARATORIA INCOMPLETA -0.01 0.01 -1.11
## educ_mNINGUNA -0.04 0.02 -1.94
## educ_mPOSGRADO -0.19 0.04 -4.81
## educ_mPRIMARIA COMPLETA 0.01 0.01 0.74
## educ_mPRIMARIA INCOMPLETA -0.02 0.01 -1.60
## educ_mPROFESIONAL -0.07 0.01 -7.28
## educ_mSECUNDARIA COMPLETA 0.01 0.01 1.46
## educ_mSECUNDARIA INCOMPLETA -0.01 0.01 -1.22
## homz -0.05 0.08 -0.58
##
## Error terms:
## Groups Name Std.Dev.
## mpio_birth (Intercept) 0.27
## Residual 0.99
## ---
## number of obs: 166200, groups: mpio_birth, 61
## AIC = 468675, DIC = 468408.5
## deviance = 468522.7
rand(fitbhl)
## Analysis of Random effects Table:
## Chi.sq Chi.DF p.value
## mpio_birth 2341 1 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Lets go for the intra-class correlation coefficient
ICC2<-VarCorr(fitbhl)$mpio_birth[1]/(VarCorr(fitbhl)$mpio_birth[1]+attr(VarCorr(fitbhl), "sc"))
# About a 6.8% of difference between municipalities.
ICC2*100
## [1] 6.802304
anova(fitb2, fitbhl)
## refitting model(s) with ML (instead of REML)
## Data: births2011
## Models:
## object: wgt ~ age_m + marital_s + prenatal_care + educ_m + (1 | mpio_birth)
## ..1: wgt ~ age_m + marital_s + prenatal_care + educ_m + homz + (1 |
## ..1: mpio_birth)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## object 18 468559 468739 -234262 468523
## ..1 19 468561 468751 -234261 468523 0.3527 1 0.5526
# I think is not a significant effect of adding the homicides by municipality into the model.
fitbrsm<-lmer(wgt~age_m+marital_s+prenatal_care+educ_m+homz+(prenatal_care|mpio_birth), data = births2011, REML = F)
display(fitbrsm, detail=T)
## lme4::lmer(formula = wgt ~ age_m + marital_s + prenatal_care +
## educ_m + homz + (prenatal_care | mpio_birth), data = births2011,
## REML = F)
## coef.est coef.se t value
## (Intercept) -0.46 0.08 -5.97
## age_m 0.01 0.00 19.70
## marital_sDIVORCIADA -0.13 0.05 -2.88
## marital_sSEPARADA -0.08 0.04 -2.09
## marital_sSOLTERA -0.06 0.01 -6.72
## marital_sUNIÓN LIBRE -0.01 0.01 -1.42
## marital_sVIUDA 0.09 0.06 1.52
## prenatal_careSI 0.22 0.04 5.55
## educ_mBACHILLERATO O PREPARATORIA INCOMPLETA -0.01 0.01 -1.10
## educ_mNINGUNA -0.04 0.02 -1.95
## educ_mPOSGRADO -0.19 0.04 -4.80
## educ_mPRIMARIA COMPLETA 0.01 0.01 0.79
## educ_mPRIMARIA INCOMPLETA -0.02 0.01 -1.67
## educ_mPROFESIONAL -0.07 0.01 -7.31
## educ_mSECUNDARIA COMPLETA 0.01 0.01 1.48
## educ_mSECUNDARIA INCOMPLETA -0.01 0.01 -1.27
## homz -0.05 0.08 -0.70
##
## Error terms:
## Groups Name Std.Dev. Corr
## mpio_birth (Intercept) 0.36
## prenatal_careSI 0.18 -0.73
## Residual 0.99
## ---
## number of obs: 166200, groups: mpio_birth, 61
## AIC = 468506, DIC = 468464
## deviance = 468464.0
anova(fitbhl, fitbrsm)
## refitting model(s) with ML (instead of REML)
## Data: births2011
## Models:
## object: wgt ~ age_m + marital_s + prenatal_care + educ_m + homz + (1 |
## object: mpio_birth)
## ..1: wgt ~ age_m + marital_s + prenatal_care + educ_m + homz + (prenatal_care |
## ..1: mpio_birth)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## object 19 468561 468751 -234261 468523
## ..1 21 468506 468716 -234232 468464 58.704 2 1.789e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# The random slope model fits better
plot(NULL, ylim=c(-3, 1), xlim=c(0,1),ylab="Intercept", xlab="Prenatal care (Yes)")
title (main="Random Slope and Intercept Model - Prenatal care by municipality")
cols<-rainbow(length(unique(births2011$mpio_birth)))
for (i in 1:dim(rancoefs2$mpio_birth)[1]){
abline(a=fixef(fitbrsm)["(Intercept)"]+rancoefs2$mpio_birth[[1]][i],
b=fixef(fitbrsm)["prenatal_careSI"]+rancoefs2$mpio_birth[ , "prenatal_careSI"][i], col=cols[i])
}
# We observed there is a difference by municipality
anova(glm(low_wgt ~ mpio_birth, family = binomial, data = births2011), test="Chisq")
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: low_wgt
##
## Terms added sequentially (first to last)
##
##
## Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL 166199 79737
## mpio_birth 60 974.41 166139 78763 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fitlw<-glmer(low_wgt ~ age_m + marital_s + prenatal_care + educ_m + (1 | mpio_birth), family = binomial, data = births2011, control = glmerControl(optimizer ="Nelder_Mead", optCtrl = list(maxfun=2e5)))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.021506 (tol =
## 0.001, component 1)
fitlw<-refit(fitlw)
arm::display(fitlw, detail=T)
## glmer(formula = low_wgt ~ age_m + marital_s + prenatal_care +
## educ_m + (1 | mpio_birth), data = births2011, family = binomial,
## control = glmerControl(optimizer = "Nelder_Mead", optCtrl = list(maxfun = 2e+05)))
## coef.est coef.se z value
## (Intercept) -2.45 0.12 -21.01
## age_m 0.01 0.00 3.55
## marital_sDIVORCIADA 0.34 0.16 2.15
## marital_sSEPARADA 0.22 0.15 1.48
## marital_sSOLTERA 0.09 0.03 2.60
## marital_sUNIÓN LIBRE 0.06 0.02 2.53
## marital_sVIUDA -0.31 0.26 -1.20
## prenatal_careSI -0.58 0.05 -10.91
## educ_mBACHILLERATO O PREPARATORIA INCOMPLETA 0.10 0.04 2.47
## educ_mNINGUNA -0.03 0.08 -0.34
## educ_mPOSGRADO 0.21 0.14 1.46
## educ_mPRIMARIA COMPLETA 0.06 0.04 1.51
## educ_mPRIMARIA INCOMPLETA 0.08 0.06 1.40
## educ_mPROFESIONAL 0.09 0.04 2.33
## educ_mSECUNDARIA COMPLETA 0.04 0.03 1.28
## educ_mSECUNDARIA INCOMPLETA 0.12 0.04 2.66
## Pr(>|z|)
## (Intercept) 0.00
## age_m 0.00
## marital_sDIVORCIADA 0.03
## marital_sSEPARADA 0.14
## marital_sSOLTERA 0.01
## marital_sUNIÓN LIBRE 0.01
## marital_sVIUDA 0.23
## prenatal_careSI 0.00
## educ_mBACHILLERATO O PREPARATORIA INCOMPLETA 0.01
## educ_mNINGUNA 0.73
## educ_mPOSGRADO 0.14
## educ_mPRIMARIA COMPLETA 0.13
## educ_mPRIMARIA INCOMPLETA 0.16
## educ_mPROFESIONAL 0.02
## educ_mSECUNDARIA COMPLETA 0.20
## educ_mSECUNDARIA INCOMPLETA 0.01
##
## Error terms:
## Groups Name Std.Dev.
## mpio_birth (Intercept) 0.60
## Residual 1.00
## ---
## number of obs: 166200, groups: mpio_birth, 61
## AIC = 78855.4, DIC = 78448.1
## deviance = 78634.7
exp(fixef(fitlw)[-1])
## age_m
## 1.0062174
## marital_sDIVORCIADA
## 1.3980227
## marital_sSEPARADA
## 1.2433528
## marital_sSOLTERA
## 1.0906696
## marital_sUNIÓN LIBRE
## 1.0619755
## marital_sVIUDA
## 0.7327644
## prenatal_careSI
## 0.5580320
## educ_mBACHILLERATO O PREPARATORIA INCOMPLETA
## 1.1101784
## educ_mNINGUNA
## 0.9720934
## educ_mPOSGRADO
## 1.2315022
## educ_mPRIMARIA COMPLETA
## 1.0588891
## educ_mPRIMARIA INCOMPLETA
## 1.0823524
## educ_mPROFESIONAL
## 1.0896364
## educ_mSECUNDARIA COMPLETA
## 1.0389570
## educ_mSECUNDARIA INCOMPLETA
## 1.1229115
exp(confint(fitlw, method="Wald"))
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.06877318 0.108598
## age_m 1.00278096 1.009666
## marital_sDIVORCIADA 1.02953521 1.898398
## marital_sSEPARADA 0.93105288 1.660406
## marital_sSOLTERA 1.02170161 1.164293
## marital_sUNIÓN LIBRE 1.01372001 1.112528
## marital_sVIUDA 0.44100177 1.217554
## prenatal_careSI 0.50253403 0.619659
## educ_mBACHILLERATO O PREPARATORIA INCOMPLETA 1.02174549 1.206265
## educ_mNINGUNA 0.82547858 1.144749
## educ_mPOSGRADO 0.93193173 1.627370
## educ_mPRIMARIA COMPLETA 0.98285764 1.140802
## educ_mPRIMARIA INCOMPLETA 0.96917856 1.208742
## educ_mPROFESIONAL 1.01386389 1.171072
## educ_mSECUNDARIA COMPLETA 0.97969244 1.101807
## educ_mSECUNDARIA INCOMPLETA 1.03103397 1.222976
# Women living in municipalities with more homicides will have higher odds of having a low weight birth, net of the individual level factors
fitlw2<-glmer(low_wgt ~ age_m + marital_s + prenatal_care + educ_m + homz+(1 | mpio_birth), family = binomial, data = births2011, control = glmerControl(optimizer ="Nelder_Mead", optCtrl = list(maxfun=2e5)))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.00889835 (tol =
## 0.001, component 1)
fitlw2<-refit(fitlw2)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.00166969 (tol =
## 0.001, component 1)
arm::display(fitlw2, detail=T)
## glmer(formula = low_wgt ~ age_m + marital_s + prenatal_care +
## educ_m + homz + (1 | mpio_birth), data = births2011, family = binomial,
## control = glmerControl(optimizer = "Nelder_Mead", optCtrl = list(maxfun = 2e+05)))
## coef.est coef.se z value
## (Intercept) -2.34 0.15 -15.13
## age_m 0.01 0.00 3.55
## marital_sDIVORCIADA 0.34 0.15 2.18
## marital_sSEPARADA 0.22 0.15 1.46
## marital_sSOLTERA 0.09 0.03 2.60
## marital_sUNIÓN LIBRE 0.06 0.02 2.53
## marital_sVIUDA -0.31 0.26 -1.21
## prenatal_careSI -0.58 0.05 -10.93
## educ_mBACHILLERATO O PREPARATORIA INCOMPLETA 0.10 0.04 2.47
## educ_mNINGUNA -0.03 0.08 -0.33
## educ_mPOSGRADO 0.21 0.14 1.46
## educ_mPRIMARIA COMPLETA 0.06 0.04 1.51
## educ_mPRIMARIA INCOMPLETA 0.08 0.06 1.41
## educ_mPROFESIONAL 0.09 0.04 2.34
## educ_mSECUNDARIA COMPLETA 0.04 0.03 1.28
## educ_mSECUNDARIA INCOMPLETA 0.12 0.04 2.66
## homz 0.18 0.18 1.01
## Pr(>|z|)
## (Intercept) 0.00
## age_m 0.00
## marital_sDIVORCIADA 0.03
## marital_sSEPARADA 0.15
## marital_sSOLTERA 0.01
## marital_sUNIÓN LIBRE 0.01
## marital_sVIUDA 0.23
## prenatal_careSI 0.00
## educ_mBACHILLERATO O PREPARATORIA INCOMPLETA 0.01
## educ_mNINGUNA 0.74
## educ_mPOSGRADO 0.14
## educ_mPRIMARIA COMPLETA 0.13
## educ_mPRIMARIA INCOMPLETA 0.16
## educ_mPROFESIONAL 0.02
## educ_mSECUNDARIA COMPLETA 0.20
## educ_mSECUNDARIA INCOMPLETA 0.01
## homz 0.31
##
## Error terms:
## Groups Name Std.Dev.
## mpio_birth (Intercept) 0.59
## Residual 1.00
## ---
## number of obs: 166200, groups: mpio_birth, 61
## AIC = 78856.4, DIC = 78449.7
## deviance = 78635.0
exp(fixef(fitlw2)[-1])
## age_m
## 1.0062113
## marital_sDIVORCIADA
## 1.3979945
## marital_sSEPARADA
## 1.2434094
## marital_sSOLTERA
## 1.0905009
## marital_sUNIÓN LIBRE
## 1.0618471
## marital_sVIUDA
## 0.7326883
## prenatal_careSI
## 0.5579736
## educ_mBACHILLERATO O PREPARATORIA INCOMPLETA
## 1.1101859
## educ_mNINGUNA
## 0.9727391
## educ_mPOSGRADO
## 1.2316231
## educ_mPRIMARIA COMPLETA
## 1.0588754
## educ_mPRIMARIA INCOMPLETA
## 1.0826722
## educ_mPROFESIONAL
## 1.0897114
## educ_mSECUNDARIA COMPLETA
## 1.0389760
## educ_mSECUNDARIA INCOMPLETA
## 1.1229748
## homz
## 1.1981729
exp(confint(fitlw2, method="Wald"))
## 2.5 % 97.5 %
## .sig01 NA NA
## (Intercept) 0.07106548 0.1303273
## age_m 1.00277518 1.0096592
## marital_sDIVORCIADA 1.03453314 1.8891504
## marital_sSEPARADA 0.92758886 1.6667588
## marital_sSOLTERA 1.02154442 1.1641120
## marital_sUNIÓN LIBRE 1.01358996 1.1124018
## marital_sVIUDA 0.44313421 1.2114439
## prenatal_careSI 0.50254322 0.6195180
## educ_mBACHILLERATO O PREPARATORIA INCOMPLETA 1.02179235 1.2062261
## educ_mNINGUNA 0.82580636 1.1458150
## educ_mPOSGRADO 0.93107987 1.6291787
## educ_mPRIMARIA COMPLETA 0.98290564 1.1407169
## educ_mPRIMARIA INCOMPLETA 0.96949000 1.2090678
## educ_mPROFESIONAL 1.01390411 1.1711866
## educ_mSECUNDARIA COMPLETA 0.97968548 1.1018547
## educ_mSECUNDARIA INCOMPLETA 1.03098763 1.2231693
## homz 0.84291746 1.7031541
# It seems like there isn't a significative difference in low weight births whit the inclusion of a group level variable: homicides.
anova(fitlw, fitlw2)
## Data: births2011
## Models:
## fitlw: low_wgt ~ age_m + marital_s + prenatal_care + educ_m + (1 | mpio_birth)
## fitlw2: low_wgt ~ age_m + marital_s + prenatal_care + educ_m + homz +
## fitlw2: (1 | mpio_birth)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## fitlw 17 78855 79026 -39411 78821
## fitlw2 18 78856 79037 -39410 78820 0.9579 1 0.3277