경로모형(path model)

구조모형(structural model) 혹인 인과모형(causal model)이라 불리는데, 그 이유는 원인이 되는 예측변수와 결과가 되는 결과변수의 관계를 추정하기 때문이다. 한가지 주의점은 인과관계라고 주장할 수 있는 이유는 연구자의 연구설계에 의해 정당화되는 것이다. ***

### 패키지 불러오기
library(lavaan)
## Warning: package 'lavaan' was built under R version 3.4.4
## This is lavaan 0.5-23.1097
## lavaan is BETA software! Please report any bugs.
library(data.table)
## Warning: package 'data.table' was built under R version 3.4.2
library(QuantPsyc)
## Warning: package 'QuantPsyc' was built under R version 3.4.4
## Loading required package: boot
## Loading required package: MASS
## Warning: package 'MASS' was built under R version 3.4.1
## 
## Attaching package: 'QuantPsyc'
## The following object is masked from 'package:base':
## 
##     norm
library(systemfit)
## Warning: package 'systemfit' was built under R version 3.4.4
## Loading required package: Matrix
## Loading required package: car
## Warning: package 'car' was built under R version 3.4.1
## 
## Attaching package: 'car'
## The following object is masked from 'package:boot':
## 
##     logit
## Loading required package: lmtest
## Warning: package 'lmtest' was built under R version 3.4.1
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Please cite the 'systemfit' package as:
## Arne Henningsen and Jeff D. Hamann (2007). systemfit: A Package for Estimating Systems of Simultaneous Equations in R. Journal of Statistical Software 23(4), 1-40. http://www.jstatsoft.org/v23/i04/.
## 
## If you have questions, suggestions, or comments regarding the 'systemfit' package, please use a forum or 'tracker' at systemfit's R-Forge site:
## https://r-forge.r-project.org/projects/systemfit/
### 파일불러오기
pm <- fread("pathmodel.csv")
mycor <- cor(pm)
mymean <- apply(pm,2,mean)
mysd <- apply(pm,2, sd)

### 다중회귀분석의 경우
myols <- lm(v4~v1+v2+v3, data=pm)
summary(myols)
## 
## Call:
## lm(formula = v4 ~ v1 + v2 + v3, data = pm)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.36903 -0.64324 -0.02091  0.57418  2.49146 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.57020    0.31403   5.000 1.08e-06 ***
## v1           0.05008    0.06795   0.737   0.4618    
## v2           0.36965    0.06192   5.970 8.11e-09 ***
## v3           0.16308    0.06634   2.458   0.0146 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8957 on 250 degrees of freedom
## Multiple R-squared:  0.2143, Adjusted R-squared:  0.2048 
## F-statistic: 22.72 on 3 and 250 DF,  p-value: 4.824e-13
### myols 표준화계수
# install.packages("QuantPsyc")

lm.beta(myols)
##         v1         v2         v3 
## 0.04852476 0.37078595 0.15242990

### 구조방정식을 이용한 회귀분석
mypml <- " v4 ~ v1+v2+v3
           v1~~v1; v2~~v2; v3~~v3
           v1~~v2; v1~~v3; v2~~v3
           v4~~v4"

obj.mypml <- sem(mypml, fixed.x=F, data=pm)
summary(obj.mypml, fit.measure=TRUE, standardized=TRUE, rsquare=TRUE)
## lavaan (0.5-23.1097) converged normally after  22 iterations
## 
##   Number of observations                           254
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                0.000
##   Degrees of freedom                                 0
##   Minimum Function Value               0.0000000000000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              161.404
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1339.027
##   Loglikelihood unrestricted model (H1)      -1339.027
## 
##   Number of free parameters                         10
##   Akaike (AIC)                                2698.054
##   Bayesian (BIC)                              2733.428
##   Sample-size adjusted Bayesian (BIC)         2701.726
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent Confidence Interval          0.000  0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   v4 ~                                                                  
##     v1                0.050    0.067    0.743    0.458    0.050    0.049
##     v2                0.370    0.061    6.017    0.000    0.370    0.371
##     v3                0.163    0.066    2.478    0.013    0.163    0.152
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   v1 ~~                                                                 
##     v2                0.409    0.066    6.154    0.000    0.409    0.419
##     v3                0.378    0.062    6.113    0.000    0.378    0.415
##   v2 ~~                                                                 
##     v3                0.250    0.061    4.086    0.000    0.250    0.265
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     v1                0.943    0.084   11.269    0.000    0.943    1.000
##     v2                1.011    0.090   11.269    0.000    1.011    1.000
##     v3                0.878    0.078   11.269    0.000    0.878    1.000
##    .v4                0.790    0.070   11.269    0.000    0.790    0.786
## 
## R-Square:
##                    Estimate
##     v4                0.214

### 오차상관통제회귀분석(SUR) 이용한 경로모형
# install.packages("systemfit")

reg2 <- v2~v1
reg3 <- v3~v1
reg4 <- v4~v1

SUR234 <- systemfit(list(OLS2=reg2,OLS3=reg3,OLS4=reg4), data=pm)

summary(SUR234)
## 
## systemfit results 
## method: OLS 
## 
##          N  DF     SSR  detRCov   OLS-R2 McElroy-R2
## system 762 756 633.396 0.483867 0.138318   0.112947
## 
##        N  DF     SSR      MSE     RMSE       R2   Adj R2
## OLS2 254 252 211.814 0.840532 0.916805 0.175237 0.171965
## OLS3 254 252 184.536 0.732286 0.855737 0.172493 0.169209
## OLS4 254 252 237.046 0.940660 0.969876 0.071315 0.067630
## 
## The covariance matrix of the residuals
##           OLS2      OLS3     OLS4
## OLS2 0.8405321 0.0868039 0.324860
## OLS3 0.0868039 0.7322856 0.151508
## OLS4 0.3248599 0.1515076 0.940660
## 
## The correlations of the residuals
##          OLS2     OLS3     OLS4
## OLS2 1.000000 0.110643 0.365345
## OLS3 0.110643 1.000000 0.182548
## OLS4 0.365345 0.182548 1.000000
## 
## 
## OLS estimates for 'OLS2' (equation 1)
## Model Formula: v2 ~ v1
## 
##              Estimate Std. Error t value   Pr(>|t|)    
## (Intercept) 2.2614124  0.2476038 9.13319 < 2.22e-16 ***
## v1          0.4333862  0.0592278 7.31727 3.3786e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.916805 on 252 degrees of freedom
## Number of observations: 254 Degrees of Freedom: 252 
## SSR: 211.814082 MSE: 0.840532 Root MSE: 0.916805 
## Multiple R-Squared: 0.175237 Adjusted R-Squared: 0.171965 
## 
## 
## OLS estimates for 'OLS3' (equation 2)
## Model Formula: v3 ~ v1
## 
##              Estimate Std. Error  t value   Pr(>|t|)    
## (Intercept) 2.4038840  0.2311109 10.40143 < 2.22e-16 ***
## v1          0.4006714  0.0552827  7.24769 5.1741e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.855737 on 252 degrees of freedom
## Number of observations: 254 Degrees of Freedom: 252 
## SSR: 184.53598 MSE: 0.732286 Root MSE: 0.855737 
## Multiple R-Squared: 0.172493 Adjusted R-Squared: 0.169209 
## 
## 
## OLS estimates for 'OLS4' (equation 3)
## Model Formula: v4 ~ v1
## 
##              Estimate Std. Error  t value   Pr(>|t|)    
## (Intercept) 2.7981616  0.2619368 10.68258 < 2.22e-16 ***
## v1          0.2756264  0.0626563  4.39902 1.6058e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.969876 on 252 degrees of freedom
## Number of observations: 254 Degrees of Freedom: 252 
## SSR: 237.046228 MSE: 0.94066 Root MSE: 0.969876 
## Multiple R-Squared: 0.071315 Adjusted R-Squared: 0.06763

### 구조방정식 이용한 경로모형 
mypm2 <- "v2~v1; v3~v1; v4~v1
          v1~~v1
          v2~~v2; v3~~v3; v4~~v4
          v2~~v3; v2~~v4; v3~~v4
          v1~1
          v2~1;v3~1;v4~1"
obj.mypm2 <- sem(mypm2, fixed.x=F, data=pm)
summary(obj.mypm2, fit.measure=TRUE, standardized=TRUE, rsquare=TRUE)
## lavaan (0.5-23.1097) converged normally after  27 iterations
## 
##   Number of observations                           254
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                0.000
##   Degrees of freedom                                 0
##   Minimum Function Value               0.0000000000000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              161.404
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1339.027
##   Loglikelihood unrestricted model (H1)      -1339.027
## 
##   Number of free parameters                         14
##   Akaike (AIC)                                2706.054
##   Bayesian (BIC)                              2755.577
##   Sample-size adjusted Bayesian (BIC)         2711.194
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent Confidence Interval          0.000  0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   v2 ~                                                                  
##     v1                0.433    0.059    7.346    0.000    0.433    0.419
##   v3 ~                                                                  
##     v1                0.401    0.055    7.276    0.000    0.401    0.415
##   v4 ~                                                                  
##     v1                0.276    0.062    4.416    0.000    0.276    0.267
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .v2 ~~                                                                 
##    .v3                0.086    0.049    1.753    0.080    0.086    0.111
##    .v4                0.322    0.059    5.469    0.000    0.322    0.365
##  .v3 ~~                                                                 
##    .v4                0.150    0.053    2.862    0.004    0.150    0.183
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     v1                4.066    0.061   66.721    0.000    4.066    4.186
##    .v2                2.261    0.247    9.169    0.000    2.261    2.249
##    .v3                2.404    0.230   10.443    0.000    2.404    2.566
##    .v4                2.798    0.261   10.725    0.000    2.798    2.791
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     v1                0.943    0.084   11.269    0.000    0.943    1.000
##    .v2                0.834    0.074   11.269    0.000    0.834    0.825
##    .v3                0.727    0.064   11.269    0.000    0.727    0.828
##    .v4                0.933    0.083   11.269    0.000    0.933    0.929
## 
## R-Square:
##                    Estimate
##     v2                0.175
##     v3                0.172
##     v4                0.071

SUR-SEM 모형 추정 결과 동일


### 오차의 공분산 추정-토플리츠 행렬 가정 <p.100>
mypm2a <- "v2~v1; v3~v1; v4~v1
          v1~~v1
          v2~~e1*v2; v3~~e1*v3; v4~~e1*v4
          v2~~e2*v3; v2~~e3*v4; v3~~e2*v4
          v1~1
          v2~1;v3~1;v4~1"
obj.mypm2a <- sem(mypm2a, fixed.x=F, data=pm)
summary(obj.mypm2a, fit.measure=TRUE, standardized=TRUE, rsquare=TRUE)
## lavaan (0.5-23.1097) converged normally after  25 iterations
## 
##   Number of observations                           254
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                5.027
##   Degrees of freedom                                 3
##   P-value (Chi-square)                           0.170
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              161.404
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.987
##   Tucker-Lewis Index (TLI)                       0.974
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1341.541
##   Loglikelihood unrestricted model (H1)      -1339.027
## 
##   Number of free parameters                         11
##   Akaike (AIC)                                2705.081
##   Bayesian (BIC)                              2743.992
##   Sample-size adjusted Bayesian (BIC)         2709.119
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.052
##   90 Percent Confidence Interval          0.000  0.128
##   P-value RMSEA <= 0.05                          0.393
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.045
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   v2 ~                                                                  
##     v1                0.433    0.059    7.373    0.000    0.433    0.420
##   v3 ~                                                                  
##     v1                0.401    0.059    6.817    0.000    0.401    0.393
##   v4 ~                                                                  
##     v1                0.276    0.059    4.689    0.000    0.276    0.282
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .v2 ~~                                                                 
##    .v3        (e2)    0.123    0.043    2.850    0.004    0.123    0.149
##    .v4        (e3)    0.288    0.051    5.608    0.000    0.288    0.349
##  .v3 ~~                                                                 
##    .v4        (e2)    0.123    0.043    2.850    0.004    0.123    0.149
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     v1                4.066    0.061   66.721    0.000    4.066    4.186
##    .v2                2.261    0.246    9.203    0.000    2.261    2.256
##    .v3                2.404    0.246    9.783    0.000    2.404    2.429
##    .v4                2.798    0.246   11.388    0.000    2.798    2.950
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     v1                0.943    0.084   11.269    0.000    0.943    1.000
##    .v2        (e1)    0.828    0.045   18.541    0.000    0.828    0.824
##    .v3        (e1)    0.828    0.045   18.541    0.000    0.828    0.845
##    .v4        (e1)    0.828    0.045   18.541    0.000    0.828    0.920
## 
## R-Square:
##                    Estimate
##     v2                0.176
##     v3                0.155
##     v4                0.080

### BK를 이용한 매개모형 추정
### 매개효과(1)
bk.step1 <-lm(cbind(v2,v3)~v1, data=pm)
summary(bk.step1)
## Response v2 :
## 
## Call:
## lm(formula = v2 ~ v1, data = pm)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.24825 -0.74167 -0.05499  0.65167  2.99830 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.26141    0.24760   9.133  < 2e-16 ***
## v1           0.43339    0.05923   7.317 3.38e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9168 on 252 degrees of freedom
## Multiple R-squared:  0.1752, Adjusted R-squared:  0.172 
## F-statistic: 53.54 on 1 and 252 DF,  p-value: 3.379e-12
## 
## 
## Response v3 :
## 
## Call:
## lm(formula = v3 ~ v1, data = pm)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.96684 -0.56684  0.03417  0.59343  2.71262 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.40388    0.23111  10.401  < 2e-16 ***
## v1           0.40067    0.05528   7.248 5.17e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8557 on 252 degrees of freedom
## Multiple R-squared:  0.1725, Adjusted R-squared:  0.1692 
## F-statistic: 52.53 on 1 and 252 DF,  p-value: 5.174e-12
### 매개효과(2)
bk.step2 <-lm(v4~v1, data=pm)
summary(bk.step2)
## 
## Call:
## lm(formula = v4 ~ v1, data = pm)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.68017 -0.66445 -0.02823  0.65480  2.99546 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.79816    0.26194  10.683  < 2e-16 ***
## v1           0.27563    0.06266   4.399 1.61e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9699 on 252 degrees of freedom
## Multiple R-squared:  0.07131,    Adjusted R-squared:  0.06763 
## F-statistic: 19.35 on 1 and 252 DF,  p-value: 1.606e-05
### 매개효과(3)
bk.step3 <-lm(v4~v1+v2+v3, data=pm)
summary(bk.step3)
## 
## Call:
## lm(formula = v4 ~ v1 + v2 + v3, data = pm)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.36903 -0.64324 -0.02091  0.57418  2.49146 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.57020    0.31403   5.000 1.08e-06 ***
## v1           0.05008    0.06795   0.737   0.4618    
## v2           0.36965    0.06192   5.970 8.11e-09 ***
## v3           0.16308    0.06634   2.458   0.0146 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8957 on 250 degrees of freedom
## Multiple R-squared:  0.2143, Adjusted R-squared:  0.2048 
## F-statistic: 22.72 on 3 and 250 DF,  p-value: 4.824e-13
 #총효과=직접효과+간접효과 계산 필요

### 구조방정식을 이용한 매개모형 추정
mypm3 <- "v2~v1; v3~v1; v4~v1
          v4~v2+v3
          v1~~v1
          v2~~v2; v3~~v3; v4~~v4
          v2~~v3
          v1~1
          v2~1; v3~1; v4~1"

obj.mypm3 <- sem(mypm3, fixed.x=F, data=pm)
summary(obj.mypm3, fit.measure=TRUE, standardized=TRUE, rsquare=TRUE)
## lavaan (0.5-23.1097) converged normally after  26 iterations
## 
##   Number of observations                           254
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                0.000
##   Degrees of freedom                                 0
##   Minimum Function Value               0.0000000000000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              161.404
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1339.027
##   Loglikelihood unrestricted model (H1)      -1339.027
## 
##   Number of free parameters                         14
##   Akaike (AIC)                                2706.054
##   Bayesian (BIC)                              2755.577
##   Sample-size adjusted Bayesian (BIC)         2711.194
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent Confidence Interval          0.000  0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   v2 ~                                                                  
##     v1                0.433    0.059    7.346    0.000    0.433    0.419
##   v3 ~                                                                  
##     v1                0.401    0.055    7.276    0.000    0.401    0.415
##   v4 ~                                                                  
##     v1                0.050    0.067    0.743    0.458    0.050    0.049
##     v2                0.370    0.061    6.017    0.000    0.370    0.371
##     v3                0.163    0.066    2.478    0.013    0.163    0.152
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .v2 ~~                                                                 
##    .v3                0.086    0.049    1.753    0.080    0.086    0.111
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     v1                4.066    0.061   66.721    0.000    4.066    4.186
##    .v2                2.261    0.247    9.169    0.000    2.261    2.249
##    .v3                2.404    0.230   10.443    0.000    2.404    2.566
##    .v4                1.570    0.312    5.040    0.000    1.570    1.566
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     v1                0.943    0.084   11.269    0.000    0.943    1.000
##    .v2                0.834    0.074   11.269    0.000    0.834    0.825
##    .v3                0.727    0.064   11.269    0.000    0.727    0.828
##    .v4                0.790    0.070   11.269    0.000    0.790    0.786
## 
## R-Square:
##                    Estimate
##     v2                0.175
##     v3                0.172
##     v4                0.214
### 구조방정식 이용한 총효과 계산
mypm3a <- "v2~g12*v1; v3~g13*v1; v4~g14*v1
          v4~b24*v2+b34*v3
          v1~~v1
          v2~~v2; v3~~v3; v4~~v4
          v2~~v3
          v1~1
          v2~1; v3~1; v4~1
          DE:= g14
          IE2 := g12*b24
          IE3 := g13*b34
          IE := g12*b24+g13*b34
          TE := g14+(g12*b24+g13*b34)"

obj.mypm3a <- sem(mypm3a, fixed.x=F, data=pm)
summary(obj.mypm3a, fit.measure=TRUE, standardized=TRUE, rsquare=TRUE)
## lavaan (0.5-23.1097) converged normally after  26 iterations
## 
##   Number of observations                           254
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                0.000
##   Degrees of freedom                                 0
##   Minimum Function Value               0.0000000000000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              161.404
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1339.027
##   Loglikelihood unrestricted model (H1)      -1339.027
## 
##   Number of free parameters                         14
##   Akaike (AIC)                                2706.054
##   Bayesian (BIC)                              2755.577
##   Sample-size adjusted Bayesian (BIC)         2711.194
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent Confidence Interval          0.000  0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   v2 ~                                                                  
##     v1       (g12)    0.433    0.059    7.346    0.000    0.433    0.419
##   v3 ~                                                                  
##     v1       (g13)    0.401    0.055    7.276    0.000    0.401    0.415
##   v4 ~                                                                  
##     v1       (g14)    0.050    0.067    0.743    0.458    0.050    0.049
##     v2       (b24)    0.370    0.061    6.017    0.000    0.370    0.371
##     v3       (b34)    0.163    0.066    2.478    0.013    0.163    0.152
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .v2 ~~                                                                 
##    .v3                0.086    0.049    1.753    0.080    0.086    0.111
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     v1                4.066    0.061   66.721    0.000    4.066    4.186
##    .v2                2.261    0.247    9.169    0.000    2.261    2.249
##    .v3                2.404    0.230   10.443    0.000    2.404    2.566
##    .v4                1.570    0.312    5.040    0.000    1.570    1.566
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     v1                0.943    0.084   11.269    0.000    0.943    1.000
##    .v2                0.834    0.074   11.269    0.000    0.834    0.825
##    .v3                0.727    0.064   11.269    0.000    0.727    0.828
##    .v4                0.790    0.070   11.269    0.000    0.790    0.786
## 
## R-Square:
##                    Estimate
##     v2                0.175
##     v3                0.172
##     v4                0.214
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     DE                0.050    0.067    0.743    0.458    0.050    0.049
##     IE2               0.160    0.034    4.655    0.000    0.160    0.155
##     IE3               0.065    0.028    2.346    0.019    0.065    0.063
##     IE                0.226    0.043    5.246    0.000    0.226    0.219
##     TE                0.276    0.062    4.416    0.000    0.276    0.267
BK모형과 구조방정식을 이용한 매개모형 추정 결과 동일

### 두 매개변수(v2,v3) 효과의 동등성 검증
temp <- "diff.IE := g12*b24-g13*b34"
mypm3b <- paste(mypm3a, temp, sep="\n")

obj.mypm3b <- sem(mypm3b, fixed.x=F, data=pm)
summary(obj.mypm3b, fit.measure=TRUE, standardized=TRUE, rsquare=TRUE)
## lavaan (0.5-23.1097) converged normally after  26 iterations
## 
##   Number of observations                           254
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                0.000
##   Degrees of freedom                                 0
##   Minimum Function Value               0.0000000000000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              161.404
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1339.027
##   Loglikelihood unrestricted model (H1)      -1339.027
## 
##   Number of free parameters                         14
##   Akaike (AIC)                                2706.054
##   Bayesian (BIC)                              2755.577
##   Sample-size adjusted Bayesian (BIC)         2711.194
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent Confidence Interval          0.000  0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   v2 ~                                                                  
##     v1       (g12)    0.433    0.059    7.346    0.000    0.433    0.419
##   v3 ~                                                                  
##     v1       (g13)    0.401    0.055    7.276    0.000    0.401    0.415
##   v4 ~                                                                  
##     v1       (g14)    0.050    0.067    0.743    0.458    0.050    0.049
##     v2       (b24)    0.370    0.061    6.017    0.000    0.370    0.371
##     v3       (b34)    0.163    0.066    2.478    0.013    0.163    0.152
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .v2 ~~                                                                 
##    .v3                0.086    0.049    1.753    0.080    0.086    0.111
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     v1                4.066    0.061   66.721    0.000    4.066    4.186
##    .v2                2.261    0.247    9.169    0.000    2.261    2.249
##    .v3                2.404    0.230   10.443    0.000    2.404    2.566
##    .v4                1.570    0.312    5.040    0.000    1.570    1.566
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     v1                0.943    0.084   11.269    0.000    0.943    1.000
##    .v2                0.834    0.074   11.269    0.000    0.834    0.825
##    .v3                0.727    0.064   11.269    0.000    0.727    0.828
##    .v4                0.790    0.070   11.269    0.000    0.790    0.786
## 
## R-Square:
##                    Estimate
##     v2                0.175
##     v3                0.172
##     v4                0.214
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     DE                0.050    0.067    0.743    0.458    0.050    0.049
##     IE2               0.160    0.034    4.655    0.000    0.160    0.155
##     IE3               0.065    0.028    2.346    0.019    0.065    0.063
##     IE                0.226    0.043    5.246    0.000    0.226    0.219
##     TE                0.276    0.062    4.416    0.000    0.276    0.267
##     diff.IE           0.095    0.046    2.084    0.037    0.095    0.092
##### z=2.084, v2변수를 경유하는 매개효과가 v3변수를 매개하는 매개효과보다 통계적으로 유의미하게 큼

### 순환모형 추정 <p.117> -텍스트형태를 상관계수행렬 오브젝트로 변환 
lower <- "
1.000
0.2220 1.0000
0.4105 0.3240 1.0000
0.3355 0.2302 0.2995 1.0000
0.1861 0.2707 0.2930 0.2950 1.0000
0.2598 0.2786 0.4216 0.5007 0.3607 1.000
"
dhp1968 <- getCov(lower, names=c("r_intel", "r_ses", "r_occasp", "f_intel", "f_ses", "f_occasp"))

### 공분산행렬을 이용한 구조방정식모형 추정 <p.118>
mypm4 <- " r_occasp ~ r_intel+r_ses+f_ses
           f_occasp ~ f_intel+f_ses+r_ses
           r_occasp ~ f_occasp
           f_occasp ~ r_occasp
           r_intel~~r_intel; r_ses~~r_ses;
           f_intel~~f_intel; f_ses~~f_ses;
           r_intel~~r_ses; r_intel~~f_intel; r_intel~~f_ses;
           r_ses~~f_intel; r_ses~~f_ses;
           f_intel~~f_ses;
           f_occasp~~f_occasp; r_occasp~~r_occasp
           f_occasp~~r_occasp
           r_intel~1; r_ses~1
           f_intel~1; f_ses~1
           f_occasp~1;r_occasp~1"

obj.mypm4 <- sem(mypm4, fixed.x=F, sample.cov = dhp1968, sample.nobs = 329)
summary(obj.mypm4, fit.measure=TRUE, standardized=TRUE, rsquare=TRUE)
## lavaan (0.5-23.1097) converged normally after  29 iterations
## 
##   Number of observations                           329
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                0.000
##   Degrees of freedom                                 0
##   Minimum Function Value               0.0000000000000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              361.862
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2617.049
##   Loglikelihood unrestricted model (H1)      -2617.049
## 
##   Number of free parameters                         27
##   Akaike (AIC)                                5288.098
##   Bayesian (BIC)                              5390.591
##   Sample-size adjusted Bayesian (BIC)         5304.948
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent Confidence Interval          0.000  0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   r_occasp ~                                                            
##     r_intel           0.285    0.052    5.469    0.000    0.285    0.285
##     r_ses             0.157    0.053    2.977    0.003    0.157    0.157
##     f_ses             0.097    0.060    1.612    0.107    0.097    0.097
##   f_occasp ~                                                            
##     f_intel           0.369    0.056    6.620    0.000    0.369    0.369
##     f_ses             0.168    0.054    3.092    0.002    0.168    0.168
##     r_ses             0.079    0.059    1.348    0.178    0.079    0.079
##   r_occasp ~                                                            
##     f_occasp          0.277    0.129    2.154    0.031    0.277    0.277
##   f_occasp ~                                                            
##     r_occasp          0.212    0.156    1.354    0.176    0.212    0.212
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   r_intel ~~                                                            
##     r_ses             0.221    0.056    3.931    0.000    0.221    0.222
##     f_intel           0.334    0.058    5.769    0.000    0.334    0.335
##     f_ses             0.186    0.056    3.319    0.001    0.186    0.186
##   r_ses ~~                                                              
##     f_intel           0.230    0.056    4.069    0.000    0.230    0.230
##     f_ses             0.270    0.057    4.739    0.000    0.270    0.271
##   f_ses ~~                                                              
##     f_intel           0.294    0.057    5.132    0.000    0.294    0.295
##  .r_occasp ~~                                                           
##    .f_occasp         -0.154    0.144   -1.065    0.287   -0.154   -0.233
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     r_intel           0.000    0.055    0.000    1.000    0.000    0.000
##     r_ses             0.000    0.055    0.000    1.000    0.000    0.000
##     f_intel           0.000    0.055    0.000    1.000    0.000    0.000
##     f_ses             0.000    0.055    0.000    1.000    0.000    0.000
##    .f_occasp          0.000    0.044    0.000    1.000    0.000    0.000
##    .r_occasp          0.000    0.046    0.000    1.000    0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     r_intel           0.997    0.078   12.826    0.000    0.997    1.000
##     r_ses             0.997    0.078   12.826    0.000    0.997    1.000
##     f_intel           0.997    0.078   12.826    0.000    0.997    1.000
##     f_ses             0.997    0.078   12.826    0.000    0.997    1.000
##    .f_occasp          0.636    0.050   12.680    0.000    0.636    0.638
##    .r_occasp          0.687    0.054   12.814    0.000    0.687    0.689
## 
## R-Square:
##                    Estimate
##     f_occasp          0.362
##     r_occasp          0.311

### 동등성 제약을 이용하여 상호 인과관계의 차이 검증
mypm4a <- " 
r_occasp ~ r_intel+r_ses+f_ses
f_occasp ~ f_intel+f_ses+r_ses
r_occasp ~ b*f_occasp
f_occasp ~ b*r_occasp
r_intel~~r_intel; r_ses~~r_ses;
f_intel~~f_intel; f_ses~~f_ses;
r_intel~~r_ses; r_intel~~f_intel; r_intel~~f_ses;
r_ses~~f_intel; r_ses~~f_ses;
f_intel~~f_ses;
f_occasp~~f_occasp; r_occasp~~r_occasp
f_occasp~~r_occasp
r_intel~1; r_ses~1
f_intel~1; f_ses~1
f_occasp~1;r_occasp~1"

obj.mypm4a <- sem(mypm4a, fixed.x=F, sample.cov = dhp1968, sample.nobs = 329)
summary(obj.mypm4, fit.measure=TRUE, standardized=TRUE, rsquare=TRUE)
## lavaan (0.5-23.1097) converged normally after  29 iterations
## 
##   Number of observations                           329
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                0.000
##   Degrees of freedom                                 0
##   Minimum Function Value               0.0000000000000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              361.862
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2617.049
##   Loglikelihood unrestricted model (H1)      -2617.049
## 
##   Number of free parameters                         27
##   Akaike (AIC)                                5288.098
##   Bayesian (BIC)                              5390.591
##   Sample-size adjusted Bayesian (BIC)         5304.948
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent Confidence Interval          0.000  0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   r_occasp ~                                                            
##     r_intel           0.285    0.052    5.469    0.000    0.285    0.285
##     r_ses             0.157    0.053    2.977    0.003    0.157    0.157
##     f_ses             0.097    0.060    1.612    0.107    0.097    0.097
##   f_occasp ~                                                            
##     f_intel           0.369    0.056    6.620    0.000    0.369    0.369
##     f_ses             0.168    0.054    3.092    0.002    0.168    0.168
##     r_ses             0.079    0.059    1.348    0.178    0.079    0.079
##   r_occasp ~                                                            
##     f_occasp          0.277    0.129    2.154    0.031    0.277    0.277
##   f_occasp ~                                                            
##     r_occasp          0.212    0.156    1.354    0.176    0.212    0.212
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   r_intel ~~                                                            
##     r_ses             0.221    0.056    3.931    0.000    0.221    0.222
##     f_intel           0.334    0.058    5.769    0.000    0.334    0.335
##     f_ses             0.186    0.056    3.319    0.001    0.186    0.186
##   r_ses ~~                                                              
##     f_intel           0.230    0.056    4.069    0.000    0.230    0.230
##     f_ses             0.270    0.057    4.739    0.000    0.270    0.271
##   f_ses ~~                                                              
##     f_intel           0.294    0.057    5.132    0.000    0.294    0.295
##  .r_occasp ~~                                                           
##    .f_occasp         -0.154    0.144   -1.065    0.287   -0.154   -0.233
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     r_intel           0.000    0.055    0.000    1.000    0.000    0.000
##     r_ses             0.000    0.055    0.000    1.000    0.000    0.000
##     f_intel           0.000    0.055    0.000    1.000    0.000    0.000
##     f_ses             0.000    0.055    0.000    1.000    0.000    0.000
##    .f_occasp          0.000    0.044    0.000    1.000    0.000    0.000
##    .r_occasp          0.000    0.046    0.000    1.000    0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     r_intel           0.997    0.078   12.826    0.000    0.997    1.000
##     r_ses             0.997    0.078   12.826    0.000    0.997    1.000
##     f_intel           0.997    0.078   12.826    0.000    0.997    1.000
##     f_ses             0.997    0.078   12.826    0.000    0.997    1.000
##    .f_occasp          0.636    0.050   12.680    0.000    0.636    0.638
##    .r_occasp          0.687    0.054   12.814    0.000    0.687    0.689
## 
## R-Square:
##                    Estimate
##     f_occasp          0.362
##     r_occasp          0.311
anova(obj.mypm4, obj.mypm4a)
## Chi Square Difference Test
## 
##            Df    AIC    BIC  Chisq Chisq diff Df diff Pr(>Chisq)
## obj.mypm4   0 5288.1 5390.6 0.0000                              
## obj.mypm4a  1 5286.2 5384.9 0.1123    0.11231       1     0.7375

### 내생변수에 대한 외생변수의 직접효과, 간접효과, 총효과 추정결과
mypm4b <- " r_occasp ~ g11*r_intel+g21*r_ses+g31*f_ses
           f_occasp ~ g42*f_intel+g32*f_ses+g22*r_ses
           r_occasp ~ b21*f_occasp
           f_occasp ~ b12*r_occasp
           r_intel~~r_intel; r_ses~~r_ses;
           f_intel~~f_intel; f_ses~~f_ses;
           r_intel~~r_ses; r_intel~~f_intel; r_intel~~f_ses;
           r_ses~~f_intel; r_ses~~f_ses;
           f_intel~~f_ses;
           f_occasp~~f_occasp; r_occasp~~r_occasp
           f_occasp~~r_occasp
           r_intel~1; r_ses~1
           f_intel~1; f_ses~1
           f_occasp~1;r_occasp~1
           DE11 := g11
           DE21 := g21; DE22 := g22
           DE31 := g31; DE32 := g32
           DE42 := g42
           IE12 := g11*b12
           IE21 := g22*b21; IE22 := g21*b12
           IE31 := g32*b21; IE32 := g31*b12
           IE41 := g42*b21
           TE11 := DE11; TE12 := IE12
           TE21 := DE21+IE21; TE22 := DE22+IE22
           TE31 := DE31+IE31; TE32 := DE32+IE32
           TE41 := IE41; TE42 := DE42
           diff.IE := IE41-IE12"

obj.mypm4b <- sem(mypm4b, fixed.x=F, sample.cov = dhp1968, sample.nobs = 329)
summary(obj.mypm4b, fit.measure=TRUE, standardized=TRUE, rsquare=TRUE)
## lavaan (0.5-23.1097) converged normally after  29 iterations
## 
##   Number of observations                           329
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                0.000
##   Degrees of freedom                                 0
##   Minimum Function Value               0.0000000000000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              361.862
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2617.049
##   Loglikelihood unrestricted model (H1)      -2617.049
## 
##   Number of free parameters                         27
##   Akaike (AIC)                                5288.098
##   Bayesian (BIC)                              5390.591
##   Sample-size adjusted Bayesian (BIC)         5304.948
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent Confidence Interval          0.000  0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   r_occasp ~                                                            
##     r_intel  (g11)    0.285    0.052    5.469    0.000    0.285    0.285
##     r_ses    (g21)    0.157    0.053    2.977    0.003    0.157    0.157
##     f_ses    (g31)    0.097    0.060    1.612    0.107    0.097    0.097
##   f_occasp ~                                                            
##     f_intel  (g42)    0.369    0.056    6.620    0.000    0.369    0.369
##     f_ses    (g32)    0.168    0.054    3.092    0.002    0.168    0.168
##     r_ses    (g22)    0.079    0.059    1.348    0.178    0.079    0.079
##   r_occasp ~                                                            
##     f_occasp (b21)    0.277    0.129    2.154    0.031    0.277    0.277
##   f_occasp ~                                                            
##     r_occasp (b12)    0.212    0.156    1.354    0.176    0.212    0.212
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   r_intel ~~                                                            
##     r_ses             0.221    0.056    3.931    0.000    0.221    0.222
##     f_intel           0.334    0.058    5.769    0.000    0.334    0.335
##     f_ses             0.186    0.056    3.319    0.001    0.186    0.186
##   r_ses ~~                                                              
##     f_intel           0.230    0.056    4.069    0.000    0.230    0.230
##     f_ses             0.270    0.057    4.739    0.000    0.270    0.271
##   f_ses ~~                                                              
##     f_intel           0.294    0.057    5.132    0.000    0.294    0.295
##  .r_occasp ~~                                                           
##    .f_occasp         -0.154    0.144   -1.065    0.287   -0.154   -0.233
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     r_intel           0.000    0.055    0.000    1.000    0.000    0.000
##     r_ses             0.000    0.055    0.000    1.000    0.000    0.000
##     f_intel           0.000    0.055    0.000    1.000    0.000    0.000
##     f_ses             0.000    0.055    0.000    1.000    0.000    0.000
##    .f_occasp          0.000    0.044    0.000    1.000    0.000    0.000
##    .r_occasp          0.000    0.046    0.000    1.000    0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     r_intel           0.997    0.078   12.826    0.000    0.997    1.000
##     r_ses             0.997    0.078   12.826    0.000    0.997    1.000
##     f_intel           0.997    0.078   12.826    0.000    0.997    1.000
##     f_ses             0.997    0.078   12.826    0.000    0.997    1.000
##    .f_occasp          0.636    0.050   12.680    0.000    0.636    0.638
##    .r_occasp          0.687    0.054   12.814    0.000    0.687    0.689
## 
## R-Square:
##                    Estimate
##     f_occasp          0.362
##     r_occasp          0.311
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     DE11              0.285    0.052    5.469    0.000    0.285    0.285
##     DE21              0.157    0.053    2.977    0.003    0.157    0.157
##     DE22              0.079    0.059    1.348    0.178    0.079    0.079
##     DE31              0.097    0.060    1.612    0.107    0.097    0.097
##     DE32              0.168    0.054    3.092    0.002    0.168    0.168
##     DE42              0.369    0.056    6.620    0.000    0.369    0.369
##     IE12              0.060    0.043    1.391    0.164    0.060    0.060
##     IE21              0.022    0.019    1.149    0.251    0.022    0.022
##     IE22              0.033    0.027    1.228    0.220    0.033    0.033
##     IE31              0.047    0.027    1.754    0.079    0.047    0.047
##     IE32              0.021    0.020    1.045    0.296    0.021    0.021
##     IE41              0.102    0.047    2.197    0.028    0.102    0.102
##     TE11              0.285    0.052    5.469    0.000    0.285    0.285
##     TE12              0.060    0.043    1.391    0.164    0.060    0.060
##     TE21              0.179    0.049    3.652    0.000    0.179    0.179
##     TE22              0.113    0.047    2.414    0.016    0.113    0.113
##     TE31              0.144    0.049    2.914    0.004    0.144    0.144
##     TE32              0.189    0.048    3.955    0.000    0.189    0.189
##     TE41              0.102    0.047    2.197    0.028    0.102    0.102
##     TE42              0.369    0.056    6.620    0.000    0.369    0.369
##     diff.IE           0.042    0.070    0.598    0.550    0.042    0.042