The relationship between depression and rumination is well-established. The purpose of this analysis is to measure this relationship in a sample of college students, who responded to an online survey about how they use Facebook and outcomes of use.
Facebook<-read.delim(file="~/Dropbox/Writing/Blogging A to Z 2018/small_facebook_set.txt", header=TRUE)
Among other measures, detailed here, participants completed the Ruminative Response Scale, which assesses Depression-Related Rumination, Brooding, and Reflecting, and the Center for Epidemiologic Studies Depression Scale. These measures were scored following instructions from the test authors:
reverse<-function(max,min,x) {
y<-(max+min)-x
return(y)
}
Facebook$Dep4R<-reverse(3,0,Facebook$Dep4)
Facebook$Dep8R<-reverse(3,0,Facebook$Dep8)
Facebook$Dep12R<-reverse(3,0,Facebook$Dep12)
Facebook$RRS<-rowSums(Facebook[,3:24])
Facebook$RRS_D<-rowSums(Facebook[,c(3,4,5,6,8,10,11,16,19,20,21,24)])
Facebook$RRS_R<-rowSums(Facebook[,c(9,13,14,22,23)])
Facebook$RRS_B<-rowSums(Facebook[,c(7,12,15,17,18)])
Facebook$CESD<-rowSums(Facebook[,c(96,97,98,100,101,102,104,105,106,108,109,110,111,112,113,114)])
The following scatterplot shows the relationship between total Rumination score and total Depression score in this sample:
library(ggplot2)
ggplot(Facebook, aes(x=RRS, y=CESD)) + geom_point() + geom_smooth(method="lm")
First, a simple linear regression was conducted with total Rumination predicting Depression.
RumDep<-lm(CESD~RRS, data=Facebook)
summary(RumDep)
##
## Call:
## lm(formula = CESD ~ RRS, data = Facebook)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.3020 -3.3885 -0.7835 2.4140 17.2783
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.45024 0.86992 9.714 <2e-16 ***
## RRS 0.19753 0.02132 9.264 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.107 on 255 degrees of freedom
## Multiple R-squared: 0.2518, Adjusted R-squared: 0.2489
## F-statistic: 85.82 on 1 and 255 DF, p-value: < 2.2e-16
Next, a regression was performed with the 3 Rumination subscales as predictors of Depression. Standardized regression coefficients were also requested to directly compare the impact of the 3 types of rumination.
RumDep2 <-lm(CESD~RRS_D+RRS_R+RRS_B, data=Facebook)
summary(RumDep2)
##
## Call:
## lm(formula = CESD ~ RRS_D + RRS_R + RRS_B, data = Facebook)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.944 -3.308 -0.677 2.572 18.271
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.12981 0.86644 9.383 < 2e-16 ***
## RRS_D 0.36845 0.06312 5.838 1.62e-08 ***
## RRS_R 0.04613 0.09928 0.465 0.643
## RRS_B -0.05401 0.12766 -0.423 0.673
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.045 on 253 degrees of freedom
## Multiple R-squared: 0.2757, Adjusted R-squared: 0.2671
## F-statistic: 32.1 on 3 and 253 DF, p-value: < 2.2e-16
library(QuantPsyc)
## Loading required package: boot
## Loading required package: MASS
##
## Attaching package: 'QuantPsyc'
## The following object is masked from 'package:base':
##
## norm
lm.beta(RumDep2)
## RRS_D RRS_R RRS_B
## 0.53245571 0.03262223 -0.03693183
Overall, the present study confirms the strong relationship between rumination and depression, and highlights that depression-related rumination (fixating on one’s negative thoughts and traits) drives this relationship.