Robert Batzinger
Dec 2 17
\[ \]
Given:
What is the minium number of colors needed to color a map?
/ | A | B | C | D | E | F | G | H | I | J | K | L | M |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 1 | 1 | 1 | 1 | 1 | ||||||||
B | 1 | 1 | 1 | 1 | 1 | ||||||||
C | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
D | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
E | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
F | 1 | 1 | 1 | 1 | |||||||||
G | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
H | 1 | 1 | 1 | 1 | 1 | ||||||||
I | 1 | 1 | 1 | 1 | 1 | ||||||||
J | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||
K | 1 | 1 | 1 | 1 | |||||||||
L | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
M | 1 | 1 | 1 | 1 |
Color ID | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Color | Red | Orange | Yellow | Green | Aqua | Blue | Purple |
Color abbrev | R | O | Y | G | A | B | P |
/ | A | B | C | D | E | F | G | H | I | J | K | L | M |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | [R] | O | Y | O | Y | ||||||||
B | R | [O] | Y | R | Y | ||||||||
C | R | O | [Y] | O | R | G | |||||||
D | R | Y | [O] | Y | G | Y | R | ||||||
E | O | Y | [R] | G | Y | O | |||||||
F | R | O | [Y] | R | |||||||||
G | Y | O | R | [G] | Y | O | |||||||
H | O | R | [Y] | O | R | ||||||||
I | O | G | [Y] | O | R | ||||||||
J | R | G | Y | Y | [O] | R | R | Y | |||||
K | Y | O | [R] | Y | |||||||||
L | O | Y | Y | O | [R] | Y | |||||||
M | O | R | R | [Y] |
Given:
Then:
chromatic number of G is less than or equal to 4
\[ \]
Therefore:
(Any map can be colored with 4 or fewer colors.)
*
Conflicts list for 10 crs
Equivalent Graph
\[ \huge v - e + f = 2 \]
Euler circuit: if and only if the degree of every vertex in the graph is even.
Euler path: if and only if there are at most two vertices in the graph with odd degree.
Hamilton Path
Hamilton Circuit