pacman::p_load(ggplot2, tidyverse, Hmisc)
lapply(lapply(search(), ls), length)
## [[1]]
## [1] 0
##
## [[2]]
## [1] 394
##
## [[3]]
## [1] 4
##
## [[4]]
## [1] 97
##
## [[5]]
## [1] 151
##
## [[6]]
## [1] 29
##
## [[7]]
## [1] 49
##
## [[8]]
## [1] 237
##
## [[9]]
## [1] 153
##
## [[10]]
## [1] 89
##
## [[11]]
## [1] 42
##
## [[12]]
## [1] 36
##
## [[13]]
## [1] 5
##
## [[14]]
## [1] 403
##
## [[15]]
## [1] 447
##
## [[16]]
## [1] 87
##
## [[17]]
## [1] 108
##
## [[18]]
## [1] 241
##
## [[19]]
## [1] 104
##
## [[20]]
## [1] 218
##
## [[21]]
## [1] 0
##
## [[22]]
## [1] 1220
列出R 在搜尋變數的時候會搜尋到的環境空間,並計算每個空間內物件數量
f <- function(year){
m <- 12*year
l <- c(5000000, 10000000, 15000000)
r <- c(0.02, 0.05, 0.07)
p <- outer(l, r/(1-(outer((1+r), (-m), "^"))), "*")
return(p)
}
mapply(f, year = c(10, 15, 20, 25, 30))
## [,1] [,2] [,3] [,4] [,5]
## [1,] 110240.5 102913.7 100870.4 100263.7 100080.2
## [2,] 220481.0 205827.4 201740.8 200527.4 200160.4
## [3,] 330721.5 308741.0 302611.2 300791.1 300240.7
## [4,] 250718.6 250038.4 250002.1 250000.1 250000.0
## [5,] 501437.1 500076.7 500004.1 500000.2 500000.0
## [6,] 752155.7 750115.1 750006.2 750000.3 750000.0
## [7,] 350104.3 350001.8 350000.0 350000.0 350000.0
## [8,] 700208.5 700003.6 700000.1 700000.0 700000.0
## [9,] 1050312.8 1050005.4 1050000.1 1050000.0 1050000.0
dta <- read.table("hs0.txt", header = TRUE)
outer(7:11, 7:11,
Vectorize(
function (i,j) t.test(dta[,i], dta[,j])$p.value
)
)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.0000000 0.5812665 0.6728327 0.7572410 0.8676815
## [2,] 0.5812665 1.0000000 0.8903494 0.3775863 0.7150322
## [3,] 0.6728327 0.8903494 1.0000000 0.4515844 0.8118467
## [4,] 0.7572410 0.3775863 0.4515844 1.0000000 0.6377587
## [5,] 0.8676815 0.7150322 0.8118467 0.6377587 1.0000000
dta %>%
gather(subject, score, 7:11) %>%
ggplot(., aes(race, score, color = subject, group = subject))+
stat_summary(fun.data = mean_se,
position = position_dodge(.5),
na.rm = TRUE)+
theme(legend.position = c(.8, .1), legend.direction = "horizontal")+
theme_bw()
m <- manova(cbind(read, write, math, science, socst) ~ race - 1, data = dta)
summary(m, test = "Wilks")
## Df Wilks approx F num Df den Df Pr(>F)
## race 4 0.017354 74.385 20 621.16 < 2.2e-16 ***
## Residuals 191
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lm(math ~ -1 + ses, data = dta)
##
## Call:
## lm(formula = math ~ -1 + ses, data = dta)
##
## Coefficients:
## seshigh seslow sesmiddle
## 56.17 49.17 52.21
ggplot(dta, aes(ses, math))+
stat_summary(fun.data = mean_cl_boot, na.rm = TRUE)+
scale_x_discrete(limits = c("low", "middle", "high"))+
scale_y_continuous(breaks = seq(40, 70, by = 2.5))+
labs(x = "SES", y = "Average Math Score")
fcube <- function(x) {(1-x^2)^0.5}
N <- 10000; x <- runif(N, 0, 1); y <- runif(N, 0, 1)
integrate(fcube, 0, 1)
## 0.7853983 with absolute error < 0.00011
curve(fcube, 0, 1, ylim = c(0, 1), ylab = "f(x)")
points(x, y, col = ifelse(fcube(x) > y, 2, 3), pch = '.')