pacman::p_load(ggplot2, tidyverse, Hmisc)
##1
## lapply(lapply(search(), ls), length)
外面的lapply用search列出目前所有物件,輸出成list 裡面的lapply用length總結出物件的數量,輸出成list 所以就是計算所有search到的物件數量
##2 P = L (r/(1-(1+r)^(-M))
f <- function(year){
m <- 12*year
l <- c(5000000, 10000000, 15000000)
r <- c(0.02, 0.05, 0.07)
p <- outer(l, r/(1-(outer((1+r), (-m), "^"))), "*")
return(p)
}
mapply(f, year = c(10, 15, 20, 25, 30))
##3 a
dta <- read.table("hs0.txt", header = TRUE)
outer(7:11, 7:11,
Vectorize(
function (i,j) t.test(dta[,i], dta[,j])$p.value
)
)
b
dta %>%
gather(subject, score, 7:11) %>%
ggplot(., aes(race, score, color = subject, group = subject))+
stat_summary(fun.data = mean_se,
position = position_dodge(.5),
na.rm = TRUE)+
theme(legend.position = c(.8, .1), legend.direction = "horizontal")+
theme_bw()
m <- manova(cbind(read, write, math, science, socst) ~ race - 1, data = dta)
summary(m, test = "Wilks")
c
lm(math ~ -1 + ses, data = dta)
ggplot(dta, aes(ses, math))+
stat_summary(fun.data = mean_cl_boot, na.rm = TRUE)+
scale_x_discrete(limits = c("low", "middle", "high"))+
scale_y_continuous(breaks = seq(40, 70, by = 2.5))+
labs(x = "SES", y = "Average Math Score")
##4
fcube <- function(x) { (1+x)*(1-x) }
N <- 10000; x <- runif(N, 0, 1); y <- runif(N, 0, 1)
curve(fcube, 0, 1, ylim = c(0, 1), ylab = "f(x)")
points(x, y, col = ifelse(fcube(x) > y, 2, 3), pch = '.')
integrate(fcube, 0, 1)